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A central claim in modern network science is that real-world networks are typically “scale free,”
meaning that the fraction of nodes with degree k follows a power law, decaying like k−α, often with
2 < α < 3. However, empirical evidence for this belief derives from a relatively small number of
real-world networks. We test the universality of scale-free structure by applying state-of-the-art
statistical tools to a large corpus of nearly 1000 network data sets drawn from social, biological,
technological, and informational sources. We fit the power-law model to each degree distribution,
test its statistical plausibility, and compare it via a likelihood ratio test to alternative, non-scale-
free models, e.g., the log-normal. Across domains, we find that scale-free networks are rare, with
only 4% exhibiting the strongest-possible evidence of scale-free structure and 52% exhibiting the
weakest-possible evidence. Furthermore, evidence of scale-free structure is not uniformly distributed
across sources: social networks are at best weakly scale free, while a handful of technological and
biological networks can be called strongly scale free. These results undermine the universality of
scale-free networks and reveal that real-world networks exhibit a rich structural diversity that will
likely require new ideas and mechanisms to explain.

Networks are a powerful way to both represent and
study the structure of complex systems of all kinds. Ex-
amples today are plentiful and include social interactions
among individuals, both offline and online, protein or
gene interactions in biological organisms, communication
between digital computers, and various kinds of trans-
portation networks. Across scientific domains and dif-
ferent types of networks, it is common to encounter the
claim that most or all real-world networks are scale free.
The precise details of this claim vary across the liter-
ature [1–7], but generally agree that a network is scale
free if the fraction of nodes with degree k follows a power-
law distribution k−α, where α > 1. Some versions of this
“scale-free hypothesis” make the requirements stronger,
e.g., requiring that α ∈ [2, 3] or that node degrees evolve
by the preferential attachment mechanism [8, 9]. Other
versions make them weaker, e.g., requiring that the power
law holds only in the upper tail [10] or is merely more
plausible than a thin-tailed distribution like an exponen-
tial or normal [11].

Despite the frequency of these claims, there has been
no broad evaluation of the empirical prevalence of scale-
free patterns in real-world networks. If networks are
in fact universally scale free, then many theoretical re-
sults about scale-free networks have broad scientific rel-
evance. For instance, the several mechanisms known to
build scale-free networks [3, 8, 9, 12–16] would provide
a common basis for understanding network assembly.
And, such mechanisms could be used to create realistic
synthetic networks for numerical simulations and exper-
iments. Moreover, many studies have investigated how
scale-free structure shapes the dynamics of processes run-
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ning over the network. For example, scale-free random
graphs are almost always susceptible to epidemics [17], a
result with profound implications for social influence and
public health applications. The universality of scale-free
networks is thus a critically important question, and re-
solving its empirical status would inform efforts to apply
results from network theory to many scientific questions.

If real-world networks are not universally or even typi-
cally scale-free, the status of a unifying theme in network
science over nearly 20 years [1, 9, 18–20] would be sig-
nificantly diminished. Such an outcome would require
a careful reassessment of the large literature that has
grown up around the idea. Even if scale-free networks
are not universal, their prevalence may be non-uniform
across different domains of networks, e.g., it may be com-
mon for social networks but rare for biological networks
to be scale free. Thus, a crucial followup question would
be to assess this differential evidence by domain, and to
characterize how real-world structures deviate from the
scale-free pattern. For domains where there is little em-
pirical support or where scale-free networks are relatively
unusual, new models of structure and new mechanisms
of assembly may be needed.

The validity and scope of the scale-free hypothe-
sis is not uncontroversial. Some research has argued
against its universality, on either statistical or theoretical
grounds [2, 3, 10, 21–24]. There have also been passionate
and personal defenses of its status [25], along with many
findings claiming to validate or support its universal-
ity [4, 5, 26–28]. This controversy has persisted because
studies have typically relied upon small, often domain-
specific data sets, less rigorous statistical methods, and
differing definitions “scale free” [4–7, 26, 27, 29, 30]. Ad-
ditionally, relatively few studies have performed statisti-
cally rigorous comparisons of a fitted power-law distri-
bution to alternative, non-scale-free distributions, e.g.,
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the log-normal or the stretched exponential, which can
imitate a power-law form in realistic sample sizes [31].

For example, Eikmeier and Gleick [32] recently inves-
tigated a number of real-world networks using rigorous
methods for fitting and testing for the plausibility of
power laws [31] in the singular values of the adjacency
matrix, the eigenvalues of the Laplacian, and the degree
distribution. Although they argue that they find broad
evidence of scale-free structure in these networks, the ev-
idence remains ambiguous in two crucial ways. First, the
statistical plausibility of scale-free structure is strongest
in the singular and eigenvalue analyses rather than in the
degree distributions, which is a different kind of scale-free
structure than the hypothesis typically posits. Second,
their analyses did not include controls for spurious con-
clusions due to small sample sizes or comparisons against
alternative distributions, both of which are necessary to
reduce the likelihood of false findings of scale-free struc-
ture [31].

Beyond statistical concerns, the literature on scale-free
networks also exhibits conflicting interpretations of the
theoretical meaning of observing a power-law degree dis-
tribution. Many studies interpret this pattern as direct
evidence that a network was assembled by the preferen-
tial attachment mechanism, or by one of its variations.
As a result, the term “scale-free network” can confus-
ingly refer to either a network with a power-law degree
distribution or a network built by preferential attach-
ment. This ambiguity has not helped resolve the con-
troversy over the universality of scale-free networks, as a
number of alternative mechanisms also produce power-
law degree distributions without relying on preferential
attachment [18–20]. This ambiguity highlights a simple
fact: degree distributions reflect modest constraints on
overall network structure [33] and are thus weak mea-
sures by which to identify generating mechanisms [34].

Here, we carry out a broad test of the universality of
scale-free networks by applying state-of-the-art statisti-
cal methods to a large and diverse corpus of real-world
networks. To account for the variability in how scale-free
networks have been defined in the literature, we formal-
ize a set of quantitative criteria that represent differing
strengths and types of evidence for scale-free structure in
a particular network. These sets of criteria allow us to ex-
tend the scale-free hypothesis beyond the domain of sim-
ple (unweighted, undirected, static) graphs and thereby
conduct a more complete evaluation of its universality.

For each of 927 network data sets drawn from all do-
mains of science, we estimate the best-fitting power-law
model, test its statistical plausibility, and then compare it
via a likelihood ratio test to alternative non-scale-free dis-
tributions. We analyze these results collectively, and then
consider how the evidence for scale-free structure varies
across domains. We conclude with a forward-looking dis-
cussion of the empirical status of the scale-free hypothesis
and offer suggestions for future research on the structure
of networks.

FIG. 1. Mean degree 〈k〉 as a function of the number of nodes
n for the 927 network data sets studied here, showing a broad
diversity of size and density. For data sets with more than one
degree sequence (see text), we plot the median of the mean
degrees of each corresponding degree sequence.

Domain Num(Prop) Multip. Bip. Multig. Weigh. Dir. Simp.

Bio. 500 (0.54) 277 41 384 29 37 39

Inf. 15(0.02) 0 0 3 0 5 7

Social 145(0.16) 4 0 5 3 0 136

Tech. 200(0.21) 122 0 3 1 192 5

Trans. 67 (0.070) 48 0 65 3 2 0

Total 927(1.00) 451 41 460 36 236 187

TABLE I. Number of network data sets, and proportion of our
network corpus, in each of five domains, under the taxonomy
given by the Index of Complex Networks [35].

I. NETWORK DATA SETS

A key component of our evaluation of the scale-free hy-
pothesis is the construction of a structurally and scientif-
ically diverse corpus of real-world networks. We drew 927
network data sets from the Index of Complex Networks
(ICON), a comprehensive online index of research-quality
network data sets, spanning all fields of science [35]. This
corpus includes networks from biological, informational,
social, technological, and transportation domains, and
which range in size from hundreds to millions of nodes.

Because of natural class imbalance in the ICON index,
the distribution of networks across domains within our
corpus is not uniform (Table I): roughly half are biologi-
cal networks, a third are social or technological networks,
and the remaining are informational or transportation
networks. These networks span five orders of magnitude
in size, are generally sparse, with a typical mean degree
of 〈k〉 ≈ 3 (Fig. 1), and generally exhibit heavy-tailed
degree distributions.

The scale-free property can be clearly defined for sim-
ple graphs, that is, for networks that are static, unipar-
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FIG. 2. A graph simplification function, which takes as input
a network G. In this case, if G is directed, the function re-
turns three degree sequences: the in-degrees, out-degrees, and
undirected degrees, while if G is undirected, it returns the
degree sequence. Appendix A contains complete details.

tite, unweighted, and undirected. For such networks,
the degree distribution can be obtained unambiguously.
However, many real-world networks are not simple, which
complicates the extraction of a degree distribution.

Our ICON corpus contains many networks that have
various combinations of directed, weighted, bipartite,
multigraph, temporal, and multiplex properties. For each
property, there can be multiple ways to extract a degree
distribution and hence multiple ways to potentially test
the scale-free hypothesis. We resolve these ambiguities
by shifting perspectives and applying a consistent proce-
dure. First, we define a network data set to be a par-
ticular network in our corpus, e.g., a directed, weighted,
multiplex network. Then, for each network data set, we
extract a set of simple graphs and their corresponding
degree sequences, each of which can be tested for the
scale-free property. Under this procedure, a directed net-
work would produce three simple graphs and thus three
degree sequences (Fig. 2), one for each of the in-degree
sequence, the out-degree sequence, and the undirected
degree sequence. Appendix A gives complete details of
the procedure for extracting a set of simple graphs from
a network data set with arbitrary properties.

Applying this procedure to our corpus of 927 network
data sets, we obtain 4477 simple graphs that serve as
the input to our statistical evaluation. We exclude from
this set any graph with either very small mean degree
〈k〉 < 2 or very large mean degree 〈k〉 >

√
n. This fil-

ter removes 7376 extremely sparse and 12,146 extremely
dense graphs, both of which are highly unlikely to be
scale free. Some network data sets produce more sim-
ple graphs than others. For instance, an unweighted, di-
rected temporal network with T snapshots will produce
3(T + 1) simple graphs: 3 graphs for each of the T snap-
shots, and 3 graphs for the time-aggregation of all the
snapshots. Complicated network data sets can thus pro-
duce a combinatoric number of simple graphs. Hence,
treating every graph independently in our evaluation of
the scale-free hypothesis could lead to skewed results,
e.g., if a few non-scale-free data sets account for a large
fraction of the total extracted simple graphs. We control
for this possibility by reporting our findings in terms of
network data sets, rather than for individual graphs.

II. ASSESSING EMPIRICAL EVIDENCE

All versions of the scale-free hypothesis include some
kind of statement about a network’s degree structure fol-
lowing a power-law distribution. Hence, a first method-
ological requirement for a broad evaluation of the empir-
ical evidence for or against the universality of scale-free
networks is the ability to test whether a particular degree
sequence is consistent with a power-law distribution. For
this question, we employ state-of-the-art statistical meth-
ods [31], which allow us to choose the best-fitting power
law, test its statistical plausibility, and compare the qual-
ity of its fit to alternative non-scale-free distributions.

A second methodological requirement stems from our
expansion of the scale-free hypothesis to non-simple net-
works. Because a given network data set can produce an
entire set of degree sequences, we define five sets of cri-
teria, which represent differing degrees of evidence that
a particular network data set exhibits scale-free struc-
ture. Data sets that fail to meet any of these criteria are
deemed Not Scale Free. Four sets of these criteria are
nested, and represent the iterative addition of different
characteristics, all found in the network science litera-
ture, about the properties of the power-law degree dis-
tributions. The fifth set represents the weakest possible
version of the scale-free hypothesis, in which it is only re-
quired that the non-scale-free distributions are relatively
worse models of the observed degrees than is the power
law. Meeting this criterion does not provide direct evi-
dence for the presence of scale-free structure, as networks
that meet this criteria alone could still reject the power
law as a direct model of their degree sequence.

A. Fitting and comparing degree distribution
models

For each degree sequence k1, k2, . . . , kn, we estimate
the best-fitting power-law distribution model, where

p(k) = C k−α α > 1, k ≥ kmin > 0 , (1)

meaning that the power-law form holds above some min-
imum value kmin. In this form, α is the scaling exponent
and C is the normalization constant.

Degree distributions are integer-valued and hence we
let k be discrete. In the literature, it is commonly as-
sumed that the power-law form may not hold for the
smallest degree vertices. To allow for this possibility, we
jointly estimate the parameter α for a power-law model
of the upper tail of the degree distribution, and the min-
imum value kmin for which that model fits [31]. Tech-
nical details of this estimation procedure are given in
Appendix B.

Fitting the power-law distribution will always return

some values for k̂min and α̂, but these give no indication
of whether the fitted model is a statistically plausible ex-
planation of the data. To assess this property of the fitted
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model, we use a goodness-of-fit test (see Appendix B) to
obtain a standard p-value. Following standard practice
in this setting [31], if p ≥ 0.1, then we deem the degree
sequence to be plausibly scale free, while if p < 0.1, we
reject the scale-free hypothesis.

Once the power-law model has been fitted to the de-
gree sequence, and its plausibility evaluated, we consider
whether it is a better fit to the data than several alter-
native, non-scale-free distributions. This step is crucial
because the inability to reject the power-law hypothesis
does not guarantee that the power-law is the best de-
scription of a degree sequence. To determine whether a
scale-free distribution is better than alternative heavy-
tailed distributions, we compared the fitted power law
to the (i) exponential, (ii) log-normal, (iii) power-law
with exponential cutoff, and (iv) stretched exponential or
Weibull distributions (Table II), all of which have been
used previously as models of degree distributions [36–40].
Each alternative model is fitted via maximum likelihood
to the empirical degrees k ≥ k̂min, with k̂min given by the
power-law fit, which ensures that the comparison with
the power-law model is not unfair [31].

The power-law fit is compared to alternatives using a
likelihood ratio test (see Appendix D), which uses the
difference in log-likelihoods between the power-law and
alternative models as a test statistic:

R = LPL − LAlt ,

where LPL is the log-likelihood of the power-law model
and LAlt is the log-likelihood of a particular alterna-
tive model. The sign of R thus indicates which of the
two models is favored, power law (R > 0) or alternative
(R < 0). An important property of the likelihood ratio
test, however, is a third outcome: R = 0, which indi-
cates that the data do not permit a distinction between
the models, i.e., neither is favored over the other.

Because R is derived from data, however, it is itself a
random variable and thus subject to statistical variations
[31, 41]. As a result, the sign ofR is only meaningful if we
can determine that |R| is far enough from 0 to provide a
clear conclusion. The standard solution for determining
how to interpret R is another hypothesis test, in which
we calculate a p-value against a null model of R = 0. If
p ≥ 0.1, the sign of R is not informative and the data
cannot tell us which model, power law or alternative, is
a better fit. If p < 0.1, then the data provide a clear
conclusion in favor of one model or the other.

In order to report results at the level of an entire net-
work data set, we apply the likelihood ratio tests to all
the associated simple graphs and then aggregate the re-
sults. Specifically, for each alternative distribution, we
count the number of simple graphs associated with a par-
ticular network data set in which the outcome favored
the alternative, favored the power law, or had an incon-
clusive result. Normalizing these counts across outcome
categories provides a continuous measure of the relative
evidence that the data set falls into each of category.

B. Definitions of a scale-free network

The methods described above can be applied to deter-
mine whether the degree sequence of a particular simple
graph is convincingly scale free. However, because net-
work data sets may produce many individual graphs as a
result of simplification, the result for any one of several
graphs is not sufficient evidence that the entire network
data set is or is not convincingly scale free. Instead, the
status of a network data set should depend on the results
derived from all of its corresponding simple graphs. To
capture the different levels and types of evidence of scale-
free structure that our battery of tests may produce, we
define five sets of criteria for a network data set (Fig. 3).

The weakest-possible definition of a scale-free network,
which we call Super-Weak, is one in which the power-law
form is merely a better description of the degree distri-
bution than alternatives, regardless of whether the power
law itself is a convincing model of the degrees. A net-
work data set classified as Super-Weak is not necessarily
scale free at all, and membership in this category simply
indicates that the degree structure of the network data
set is not obviously not scale-free. Formally, we define
this category representing indirect evidence of scale-free
structure as follows.

• Super-Weak: For at least 50% of graphs, none
of the alternative distributions are favored over the
power law.

The four remaining definitions are nested, and represent
increasing levels of direct evidence that the degree struc-
ture of the network data set is scale free:

• Weakest: For at least 50% of graphs, the power-
law hypothesis cannot be rejected (p ≥ 0.1).

• Weak: The requirements of the Weakest set, and
there are at least 50 nodes in the distribution’s tail
(ntail > 50).

• Strong: The requirements of the Weak set, and
that both 2 < α̂ < 3, and for at least 50% of
graphs none of the alternative distributions are fa-
vored over the power-law.

• Strongest: The requirements of the Strong set for
at least 90% of graphs, rather than 50%, and for at
least 95% of graphs none of the alternative distri-
butions are favored over the power-law.

The progression from Weakest to Strongest categories
represents the addition of more specific properties of the
power-law degree distribution, all found in the litera-
ture on scale-free networks or distributions. Broadly,
these properties span requiring that a sufficient number
of nodes be in the scaling regime, that the scaling pa-
rameter α fall in a specific range, and that the power-law
model be favored over alternatives. Requiring a mini-
mum of 50 points in the tail of the distribution is a fairly
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FIG. 3. Taxonomy of scale-free network definitions, in or-
der of increasing statistical evidence required: (i) Super-Weak
scale-free hypothesis, meaning that the power-law shape is
not itself statistically plausible but is less implausible than
alternatives; (ii) Weakest, meaning plausibly power-law dis-
tributed; (iii) Weak, adding a minimum of 50 observations
in the tail; (iv) Strong, also requiring 2 < α̂ < 3; and, (v)
Strongest, increasing the fraction of graphs that must fit the
requirements. The Super-Weak overlaps with the weak def-
initions and contains the strong definitions as special cases.
Networks that fail to meet any of these criteria are deemed
Not Scale Free.

weak requirement to rule out cases where we are obvi-
ously fitting to noise.

In the Strongest category, the threshold of 90% of
graphs is determined by our choice of the Type I error
rate for the goodness-of-fit hypothesis test. If all of the
graphs for a network data set are indeed scale free, the
goodness-of-fit test will be expected to incorrectly reject
the power-law model p = 0.1 of the time. The choice of
95% for the comparison with the alternative distributions
follows a similar rationale.

C. Method validation on synthetic networks

In order to evaluate the accuracy of these methods,
we tested them on three classes of synthetic networks
with mathematically well-understood degree distribu-
tions. Two mechanisms produce scale-free networks (a
directed version of preferential attachment [42] and a di-
rected vertex copy model [43]), and one does not (simple
Erdős-Rényi random graphs). Applied to synthetic net-
works generated by these mechanisms, our methodology
correctly placed the synthetic data sets into scale-free
categories suitable for their generating parameters, i.e.,
preferential attachment and vertex-copy data sets were
categorized as scale-free networks, while Erdős-Rényi
random graphs were not (see Appendix E).

FIG. 4. Distribution of median α̂-values by scale-free evidence
category. For visual clarity 8% of data sets, which had median
α̂ ≥ 6.5, are omitted.

III. RESULTS

We begin investigating the empirical evidence for the
universality of scale-free networks by considering the
distribution of estimated power-law scaling parameters
Pr(α̂), both for the corpus overall and for each group of
data sets ranging from the Super-Weak to Strongest evi-
dence categories. We then consider how the fitted power-
law distributions fare relative to alternative distributions
across data sets. Finally, we combine these results to
form a quantitative assessment of the relative degrees of
evidence for scale-free structure across all data sets in the
corpus and by data sets drawn from different domains.

A. Power-law distributions

A simple summary of each network data set is the me-
dian scaling parameter α̂ among its corresponding simple
graphs. Across the corpus, the overall distribution of me-
dian parameters is concentrated around a value of α = 2,
but also exhibits a long right-tail, with 32% of data sets
having α̂ ≥ 3 (Fig. 4). The range 2 < α < 4 is sometimes
identified as including the most emblematic of scale-free
networks [9], and we find that 43% of network data sets
have estimated parameters in this range. However, we
also find that nearly 31% of network data sets exhibit a
median parameter in the range α̂ < 2, which is a rela-
tively unusual value in the scale-free network literature.

However, the power-law distributions represented by
these small parameters are not necessarily statistically
plausible. Hence, the shape or concentration of this over-
all distribution is not evidence for, or against, the uni-
versality of scale-free networks. A simple check of our re-
sults is whether there is a clear relationship between the
size of a network n and the median power-law parame-
ter α̂—a strong correlation, in either positive or negative
directions, may be indicative of a systematic bias in our
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FIG. 5. Median α̂ parameter as a function of network data set
size n. A horizontal band highlights the canonical 2 ≤ α ≤ 3
range and illustrates the broad diversity of estimated power-
law parameters across empirical networks.

methodology. Instead, we find barely any correlation be-
tween n and α̂, with r2 = 0.06 (p = 4×10−13), indicating
little evidence of systematic bias (Fig. 5).

Across the five categories of evidence for scale-free
structure, the distribution of median α̂ parameters varies
considerably (Fig. 4, insets). For data sets that fall into
the Super-Weak category, we find a distribution with
breadth similar to that of the overall distribution, with
a long right-tail and many data sets with α̂ > 3. Only
a handful of data sets with α̂ < 2 exhibit even Super-
Weak or Weakest evidence of scale-free structure. In
our corpus, these particular data sets correspond to pla-
nar networks, representing mycelial fungal or slime mold
growth patterns [44]. Even among the Weakest and Weak
categories, the distribution of median α̂ parameters re-
mains broad, with a a substantial fraction exhibiting
α̂ > 3. The Strong and Strongest categories require that
α̂ ∈ [2, 3], and we find that the few network data sets in
these categories are slightly more prevalent near α̂ = 2.

B. Alternative Distributions

Independent of whether the power-law model is a sta-
tistically plausible explanation of a particular degree se-
quence, a model comparison between the fitted power law
and alternative distributions can be instructive. In par-
ticular, the likelihood ratio test can reveal whether some
other distribution is an equally good or even a better fit
to the data. And, an outcome in which a power law is
both a statistically plausible model of the data and a bet-
ter model than alternatives provides strong evidence of
scale-free structure.

Across our corpus of network data sets, likelihood ra-
tio tests find only modest support for the power-law dis-
tribution over alternatives (Table II). For instance, the

Alternative p(x) ∝ f(x)

Test Outcome

MPL Inconclusive MAlt

Exponential e−λx 37% 27% 36%

Log-normal
1

x
e
− (log x−µ)2

2σ2 12% 43% 45%

Weibull e−( xb )a 33% 25% 42%

Power law
with cutoff

x−αe−λx
— 49% 51%

TABLE II. Likelihood-ratio test results from comparing the
best fit for four alternative distributions with the best fit
power-law distribution for our data sets. We give the form
of the distribution f(x), and show the percentage of network
data sets that favor the power-law model MPL, alternative
model MAlt, or neither.

exponential distribution, which exhibits a thin tail and
relatively low variance, is favored over the power law
(36%) nearly as often as the power law is favored over
the exponential (37%). This outcome accords with the
broad distribution of scaling parameters, as when α > 3
(Fig. 4, 32% of data sets), the degree distribution must
have a relatively thin tail.

The log-normal is a broad distribution that can exhibit
very heavy tails, but which is nevertheless not scale free.
Across data sets, we find that the log-normal is favored
more than three times as often (45%) over the power law,
than vice versa (12%), and the tests are inconclusive in
the remainder of cases (43%). Thus, in 88% of cases, the
log-normal was at least as good-fitting as the power law
for degree distributions. This behavior reflects the well-
known fact that log-normals and power laws are generally
very difficult to distinguish with finite-sized samples [31].

The Weibull or stretched exponential distribution can
produce both thin or heavy tails, and is a generalization
of the exponential distribution. Like the log-normal, we
find that the Weibull is more often a better statistical
model of degree distributions (42%) than is the power
law (33%). Finally, the power-law distribution with an
exponential cut-off requires special consideration, as it
contains the pure power-law model as a special case. As
a result, the likelihood of the power law can never exceed
that of the cutoff model, and the interesting outcome is
the degree to which the test is inconclusive between the
two. We find that just over half of the data sets favor
the cutoff model over the pure power-law model, which
suggests that, to the degree that scale-free networks are
universal, finite-size effects in the extreme upper tail are
quite common.

C. Assessing the Scale-free Hypothesis

Given the results of fitting and testing the power-law
distribution across network data sets, and the results of
comparing that model to alternative models, we can now
classify each according to the degree of evidence it ex-
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FIG. 6. Proportions of networks in each scale-free evidence
category. The four nested definitions are at the bottom, with
super-weak separated by bars. Networks that are neither
weakest or super-weak are considered not scale-free.

hibits for scale-free structure. Accordingly, each network
data set is assigned to one of the five categories described
in Section II B, or classified as Not Scale Free.

Across our corpus, fully 43% of network data sets fall
into this latter category, admitting no evidence at all
for scale-free structure (Fig. 6). Slightly more than half
(52%) fall into the Super-Weak category, in which a scale-
free pattern among the degrees is not itself statistically
plausible, but remains marginally more plausible than
alternative distributions. The Weakest and Weak cate-
gories represent network data sets in which the power-law
distribution itself is a statistically plausible model of the
networks’ degree distributions. In the Weak case, this
power-law scaling covers at least 50 nodes, a relatively
modest requirement. These two categories account for
33% and 24% of data sets, respectively, indicating that
direct statistical evidence of a plausibly scale-free degree
distribution is, in fact, relatively uncommon.

Finally, only 11% and 4% of network data sets can be
classified into the Strong or Strongest categories, respec-
tively, in which the power-law distribution is not only a
statistically plausible model of the degree structure, but
the exponent falls within the special α ∈ [2, 3] range and
the power law is a better model of the degrees than al-
ternatives. Taken together, these results indicate that
genuinely scale-free networks are remarkably rare, and
scale-free structure is not a universal pattern.

The balance of evidence for or against scale-free struc-
ture in our corpus also varies by network domain (Fig. 7).
The degree to which different domains exhibit evidence of
scale-free structure should clarify the past and shape fu-
ture efforts to develop new structural mechanisms. Here,
we focus our analysis on network data sets from three
domains: biological, social, and technological, which rep-
resent 91% of our corpus.

Among biological networks, a large majority lack any
direct or indirect evidence of scale-free structure (61%
Not Scale Free; Fig. 7a). The aforementioned fungal net-
works represent a large share of these Not Scale Free
networks, but this group also includes some protein in-

teraction networks and some food webs. Among the re-
maining networks, roughly one third exhibit only indirect
evidence (35% Super-Weak), and a modest fraction ex-
hibit the weakest form of direct evidence (22% Weakest).
This latter group includes cat and rat brain connectomes.
Compared to the corpus as a whole, biological networks
are slightly more likely to exhibit the strongest level of di-
rect evidence of scale-free structure (6% Strongest), and
these are primarily metabolic networks.

In contrast, social networks present a different picture,
in two specific ways. First, a minority of social networks
lack any direct or indirect evidence of scale-free struc-
ture (19% Not Scale Free; Fig. 7b), and a large majority
exhibit indirect evidence (71% Super-Weak). The for-
mer group includes the 2006 snapshot of collaborations in
network science, and a number of both Facebook online
social networks, and board of directors networks. The
Super-Weak group includes a large number of both Face-
book friendship networks and board of director networks.

And second, among the categories representing direct
evidence of scale-free structure, not a single network data
set falls into the Strong or Strongest categories. Hence
social networks are at best only weakly scale free, with
70% and 55% exhibiting the weakest or weak direct ev-
idence of scale-free structure, respectively. The social
networks exhibiting weak evidence include about a third
of the Facebook online social networks and half of the
board of director networks.

Technological networks exhibit the smallest share of
network data sets for which there is no evidence, direct
or indirect, of scale-free structure (7% Not Scale Free;
Fig. 7c), and the largest share exhibiting indirect evi-
dence (92% Super-Weak). The former group includes
some digital circuit networks and water distribution net-
works. Among the categories representing direct evi-
dence, less than half exhibit the weakest form of direct ev-
idence (43% Weakest). This group includes about half of
the CAIDA autonomous systems networks, several peer-
to-peer networks, and a few digital circuit networks. In
contrast to biological or social networks, however, tech-
nological networks exhibit a modest fraction of networks
with strong direct evidence of scale-free structure (28%
Strong). Networks in this category include the other half
of the CAIDA graphs. But, hardly any of the technologi-
cal networks exhibit the strongest level of direct evidence
(1% Strongest).

Extending the scale-free network hypothesis to cover
networks that were not simple allowed us to draw on a
much larger range of empirical network data sets. It is
therefore possible that the numerous non-simple network
data sets we analyzed have distinct structural patterns
from simple networks, and hence are less likely to ex-
hibit a scale-free pattern. We test for this possibility by
examining the classifications of the 187 simple networks
within the corpus. Among these networks, a minority
exhibit neither direct nor indirect evidence of scale-free
structure (24% Not Scale Free), and a modest major-
ity exhibit at least indirect evidence (66% Super-Weak;
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FIG. 7. Proportions of networks in each scale-free evidence
category divided by domain. (A) Biological networks. (B)
Social networks. (C) Technological networks.

Fig. 8). Compared to the overall corpus, about twice as
many simple networks exhibit weak direct evidence, and
about the same proportion exhibit strong direct evidence.
These differences can be partly explained by the distri-
bution of simple graphs by domain, as 73% of simple
graphs in the corpus are social, which exhibits similar
proportions across the evidence categories. Hence, the
general rarity of scale-free networks holds even when we
restrict our analysis to simple graphs, and our inclusion
of non-simple graphs has not skewed our results.

To rule out potential bias of our stronger scale-free
definitions against the hypothesis, we also examine the
results when we remove the power law with exponential
cutoff from our list of alternative distributions. As the

power law is a special case of the power law with cutoff,
our likelihood-ratio test can only be inconclusive or result
in favor of the power law with cutoff. In the case where
the power law with cutoff is the best model, this case
cannot be placed in the Strongest or Strong scale-free
categories by definition. We found initially that 10.6% of
data sets fall into the Strong category. When we include
data sets for which the power law with exponential cutoff
was favored over the power law, this increases negligibly
to 11.4% of data sets. Additionally, if we also remove
the restriction on the range of α, the percentage of data
sets in this Strong category increases to 23%. This is
very close to the results for the Weak category (24%),
which indicates that the majority of the decrease from
the Weak to the Strong is due to the imposition of the
bounds on α rather than the requirement against favoring
alternative distributions. There is a similarly negligible
increase in the number of datasets in the Strongest cat-
egory, from 3.8% to 4.4% when we allow data sets for
which the power law with exponential cutoff is favored.
This is all consistent with the fact that the construction
of our likelihood-ratio tests favors the power-law distribu-
tion since we use the kmin that maximizes the likelihood
of the power-law fit.

To summarize: across a large and diverse corpus, we
find that it is remarkably rare for a network data set
to exhibit the strongest form of direct evidence of scale-
free structure, and this fact holds true across different
domains. Recall that the Strongest level of evidence re-
quires that the best-fitting power-law distribution (i) is
itself statistically plausible and have an estimated param-
eter in the range α ∈ [2, 3], and (ii) is at least as good a
model as any alternatives. Hence the rarity of networks
that meet these criteria implies that in general a scale-
free distribution is rarely the best model of a network’s
degrees. Or, in other words, we find essentially no empiri-
cal evidence to support the special status that the power
law has held in network science as a starting point for
modeling and analyzing the structure of real networks.
Instead, it is an empirical fact that real-world networks
exhibit a rich variety of degree structures, relatively few
of which are convincingly scale free.

IV. CONCLUSIONS

By evaluating nearly 1000 distinct real-world network
data sets drawn from a wide range of scientific domains,
we find that genuine scale-free networks are rare. In
fact, less than 45 network data sets (4%) exhibited the
strongest level of direct evidence for scale-free structure,
and only 33% of network data sets exhibited the weakest
form of direct evidence, in which a power law is at least a
statistically plausible model of some portion of the upper
tail of the degree distribution. Relaxing the criteria even
further, to allow merely indirect evidence of scale-free
structure in the degree distribution, admits only 52% of
networks data sets, and nearly half (43%) of the data sets
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FIG. 8. Proportions of networks in each scale-free evidence
category for simple networks.

could be deemed Not Scale Free, meaning they showed no
direct or indirect evidence of scale-free structure. These
results clarify the empirical status of the common claim
that scale-free networks are universal, and indicate that
such claims are generally not empirically grounded.

Across different scientific domains, the evidence for
scale-free structure is generally weak, but varies slightly
in interesting ways. These differences provide some hints
as to where genuine scale-free structure may exist. For
instance, we find somewhat stronger evidence that scale-
free structure occurs in some biological and technologi-
cal networks. This pattern of evidence agrees with some
theoretical work on domain-specific mechanisms for gen-
erating scale-free structure, e.g., in biological networks
via the well-established duplication-mutation model for
molecular networks [3, 14, 45] or in certain kinds of tech-
nological networks via highly optimized tolerance [18, 46].

In contrast, we find that social networks are at best
weakly scale free, indicating that if mechanisms like
preferential attachment [1, 12, 13] or its many vari-
ants [15, 16] do operate in these contexts, they are
strongly confounded by other mechanisms that cause sta-
tistically significant deviations from the expected power-
law form. Class imbalance in the corpus prevents us from
making broad conclusions about the prevalence of scale-
free structure in informational networks or the theoretical
relevance of scale-free mechanisms in that domain. How-
ever, the few informational networks we analyzed pro-
vided little indication that they would exhibit strongly
different structural patterns that the domains with bet-
ter representation in our corpus.

In general, the modest differences in the balance of ev-
idence across the three domains for which we obtained
sufficiently large samples—social, biological, and techno-
logical networks—seem to support a general conclusion
that there is likely no single universal mechanism, or even
a handful of mechanisms, that can explain the wide di-
versity of degree structures found in real-world networks.
The failure to find universal patterns in the degree struc-
ture of networks indicates that a great deal remains un-
known about how networks from different domains differ
and what kind of structural patterns are common within

them. We look forward to new investigations that detail
these differences and commonalities.

The empirical rarity of scale-free networks presents
both a puzzle and an opportunity. The strong focus on
scale-free patterns over nearly 20 years has meant rel-
atively less is known about alternative mechanisms that
produce non-scale-free structural patterns. Hence, an im-
portant direction of future work in network theory will
be development and validation of novel mechanisms for
generating more realistic degree structure in networks.
Similarly, theoretical results concerning the behavior of
dynamical processes running on top of networks, includ-
ing spreading processes like epidemiological models or in-
fluence models, may need to be reassessed in light of the
genuine structural diversity of real-world networks.

The statistical methods and evidential categories de-
veloped and used in our investigation provide a quantita-
tively rigorous manner by which to assess whether some
network exhibits scale-free structure or not. Their appli-
cation to a novel network data set should enable future
researchers to determine whether scale-free modeling as-
sumptions are empirically justified.

Furthermore, large corpora of real-world networks, like
the one used here, represent a powerful, data-driven re-
source by which to investigate the structural variability of
real-world networks. Such corpora could be used to eval-
uate the empirical status of many other broad claims in
the networks literature, including the tendency of social
networks to exhibit high clustering coefficients and posi-
tive degree assortativity [47], the prevalence of the small-
world phenomena [48], the prevalence of “rich clubs” in
networks [49], the ubiquity of community [50] or hierar-
chical structure [51], and the existence of “super-families”
of networks [52]. We look forward to those investigations
and the new insights they are sure to bring to our under-
standing of the structure and function of networks.
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FIG. 9. Flowchart describing the path from network data
set to degree sequence(s). Each step removes a layer from
the properties. The gray path is for multiplex, bipartite, or
multigraph networks, while the blue is for weighted networks
without these properties. Details in text.

At each stage in our processing we remove one prop-
erty at a time, making the network simpler and never
adding properties. Repeating this process for each prop-
erty in succession converts a network data set into a set of
simple graphs. Some networks are processed into a large
number of simple graphs, due to combinatoric blowup of
multiple properties. To minimize some of this, we treat
weighted graphs differently depending on whether or not
they have any multiplex, bipartite, or multigraph prop-
erties. Multiplex networks include temporal networks, so
many of these have a large number of layers, which can
generate many simple graphs, (see below). Thus to miti-
gate some of the potential blowup, if the graph has any of
these properties we ignore the weights. If not, however,
the data set is replaced with three unweighted graphs as
follows. The goal of this transformation is to replace a po-
tentially dense weighted graph with a set of unweighted
graphs that are relatively sparse, but not so sparse as
to be trivially disconnected so we identify and then ap-
ply three thresholds to the edge weights, so that the
resulting unweighted graphs have 〈k〉 = {2, n1/4,

√
n}.

These threshold values are determined by the empirical
edge weight distribution of the graph, and correspond
to choosing the m = {n, (1/2)n5/4, (1/2)n3/2} largest-
weight edges, respectively.

The lower value of 〈k〉 or m represents a very sparse
graph, retaining primarily the largest-weight edges, but
not so sparse as to be likely strongly disconnected. The
upper value represents a relatively dense network, retain-
ing all but the smallest-weight edges, but not so dense
that the degree distribution is trivial. The middle value

splits the difference between these. Our corpus contains
only 3 weighted networks, 5 weighted directed networks,
for 8 total weighted networks, so these networks represent
a modest share of the resulting corpus.

Multiplex and temporal network data sets are com-
posed of T “layers,” each of which is a network itself. The
multiplex network is replaced by a set of T+1 graphs, one
for each layer and one for the union of edges and nodes
across all layers. In this way, the multiplex or temporal
property is removed, and the original data set replaced
with a set of graphs. Each graph in this set is then fur-
ther processed to remove any remaining non-simple prop-
erties. A bipartite graph is replaced with three graphs:
one each for the “A-mode” projection, “B-mode” projec-
tion, and original bipartite graph. If present, multi-edges
are collapsed and weights discarded. Next, a graph is
checked to determine whether it is connected. If it is not
connected, it is replaced with two graphs: one which con-
tains only the largest component and one that contains
the entire, disconnected graph.

As a final step, directed graphs are replaced by three
degree sequences: one for the in-degrees, one for the out-
degrees, and one for the total degrees; undirected graphs
are replaced with the single degree sequence. The results
of this sequential processing is a set of degree sequences
that, as a group, represent the original network. Our
corpus contains 2 pure multiplex networks, 320 multiplex
multigraphs, and 130 multiplex directed networks; this
yields 451 total multiplex networks.

Network data sets that are bipartite and not multi-
plex are first replaced with three graphs: one for the “A-
mode” project, one for the “B-mode” projection, and one
for the original bipartite graph. Each of these graphs is
then processed starting from just after the bipartite step
described above in the multiplex or temporal network
processing pathway. In our corpus, there are 16 purely
bipartite networks, and 25 bipartite weighted networks;
this yields 41 bipartite networks total.

Data sets that are multigraphs, but not multi-
plex/temporal or bipartite, are merely simplified by col-
lapsing multi-edges. Edge weights are then discarded,
and the resulting graph is processed starting from the
check for directedness as above. In our corpus, there are
137 multigraphs and 2 weighted multigraphs, 1 weighted
directed multigraph; this yields 460 multigraphs total,
including those that are multiplex.

Data sets that are only directed, with no other proper-
ties, are first checked for their connectedness (see above)
and are then processed to produce three degree se-
quences: one each for the in-degrees, out-degrees, and
total degrees. In our corpus, there are 236 directed net-
works. In the case of a simple graph, the only check is for
connectedness. Our corpus contains 187 simple networks.

Replication data, in the form of the corpus of degree
sequences obtained by the above simplification steps,
is available (see acknowledgements). The corpus of
927 original network data sets represents approximately
250GB of data, and is hence not easily shareable.
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Appendix B: Power-law analysis

1. Fitting the model

If k follows a discrete power-law distribution starting
at kmin ≥ 1, then pdf of the power law has the form

p(k) =
1

ζ(α, kmin)

∞∑
k=kmin

k−α

where ζ(α, kmin) =

∞∑
i=0

(i+kmin)−α is the Hurwitz zeta

function.
Estimating α requires first choosing kmin, which we es-

timate via the standard Kolmogorov-Smirnov (KS) min-
imization approach [31]. This methods selects the kmin

that minimizes the maximum difference in absolute value
between the (cumulative) empirical distribution E(k) on
the observed degrees k ≥ kmin and the cdf of the best fit-
ting power law P (k | α̂) on those same observations. This
difference, called the KS-statistic, is defined as

D = max
k≥kmin

|E(k)− P (k | α̂)| .

We choose as kmin the value that minimizes the D.
The estimate α̂ is chosen by maximum likelihood (the
MLE), which we obtain by numerically optimizing the
log-likelihood function [31].

2. Testing goodness-of-fit

We assess the goodness-of-fit of the fitted model using a
standard p-value, numerically estimated via the standard
semi-parametric bootstrap approach [31]. Given a degree
sequence with n elements, of which ntail are k ≥ kmin

and with MLE α̂, a synthetic data set is generated as
follows. For each of n synthetic values, with probability
ntail/n we draw a random number from the fitted power-
law model, with parameters kmin and α̂. Otherwise, we
choose a value uniformly at random from the empirical
set of degrees k < kmin. Repeated n times this produces
a synthetic data set that closely follows the empirical
distribution below kmin and follows the fitted power-law
model at and above kmin.

Applying the previously defined fitting procedure to a
large number of these synthetic data sets yields the null
distribution of KS-statistics Pr(D). Let D∗ denote the
value of the KS-statistic for the best fitting power-law
model for the empirical degree sequence. The p-value
for this model is defined as the probability of observing,
under the null distribution, a KS-statistic at least as ex-
treme as D∗. Hence, p = Pr(D ≥ D∗) is the fraction
of synthetic datasets with KS statistic larger than that
of the empirical data set. Following standard practice,
if p < 0.1, then we reject the power law as a plausible
model of the degree sequence, and if p ≥ 0.1, then we

fail to reject the model [31]. We note: failing to reject
does not imply that the model is correct, only that it is
a plausible data generating process.

Appendix C: Alternative Distributions

1. Exponential

If k follows a discrete exponential distribution starting
at kmin, then the pdf of the exponential has the form

p(k) =

(
e−λkmin

1− e−λ

)
e−λk .

As with the power-law distribution, we use standard nu-
merical maximization routines to estimate the maximum
likelihood choice of λ.

2. Log-normal

The log-normal distribution is typically defined on a
continuous variable k. To adapt this distribution to dis-
crete values, we bin the continuous distribution and then
adjust so that it begins at kmin rather than at 0.

Let f(k) and F (k) be the density and distribution func-
tions of a continuous log normal variable, where

f(k) =
1√

2πσk
e−

(log k−µ)2

2σ2 , x > 0

and

F (k) =
1

2
+

1

2
erf

[
(log k − µ)√

2σ

]
.

We define g(k) and G(k) to be the density and distri-
bution functions of a discrete log-normal variable, given
by

g(k) = F (k + 1)− F (k) , x ≥ 0

and

G(k) =

k∑
y=0

g(y) = F (k + 1)− F (0) = F (k + 1) .

We then generalize the distribution to start at some
minimum value, i.e., rather than starting at 0, the dis-
tribution starts at k = kmin, where kmin is a positive
integer. This pmf is obtained by re-normalizing the tail
of g(k) so that it sums to 1 on the interval kmin to ∞,
yielding

h(k) =
g(k)∑∞

k=kmin
g(k)

=
g(k)

1−
∑kmin−1
k=0 g(k)

=
g(k)

1−G(kmin − 1)
=

g(k)

1− F (kmin)
.
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Maximum likelihood estimation was carried out using
standard numerical optimization routines. Additionally,
we constrained the optimization in order to prevent nu-
merical instabilities. Specifically, we required σ ≥ 1 and
µ ≥ −bn/5c. As a check on these constraints, we verified
that in no cases did the likelihood improve significantly
by allowing σ < 1, and the constraint on µ prevents
it from decreasing without bound (a behavior that can
produce arbitrarily heavy-tailed distributions over a fi-
nite range in the upper tail). To initialize the numerical
search, we set (µ0, σ0) = (0, 1).

3. Power-law with exponential cutoff

If k follows a discrete power-law distribution starting
at kmin, and with an exponential cutoff in the upper tail,
then its pdf has the form

p(k) =
[
e−kmin λ Φ(e−λ, α, kmin)

]
k−αe−λk

where Φ(z, s, a) =

∞∑
i=0

zi

(a+ i)s
is the Lerch Phi func-

tion.
We again estimate this distribution’s parameters λ and

α using standard numerical maximization routines.

4. Weibull (Stretched exponential)

A common approach to obtain a discrete version of
the stretched exponential or Weibull distribution is to
bin the continuous distribution [53]. Let f(k) and F (k)
be the density and distribution functions of a continuous
Weibull variable, where

F (k) = 1− e−(k/b)
a

, x ≥ 0 .

Define g(k) and G(k) to be the density and distribution
functions of a discrete Weibull variable, given by:

g(k) = F (k + 1)− F (k), x ≥ 0

and

G(k) =

k∑
y=0

g(y) = F (k + 1)− F (0) = F (k + 1) .

As with the log-normal, we generalize the distribution
to start at some minimum value, i.e., rather than starting
at 0, the distribution starts at k = kmin, where kmin is a
positive integer. This pmf is obtained by re-normalizing
the tail of g(k) so that it sums to 1 on the interval kmin

to ∞, yielding

h(k) = e(kmin/b)
a
[
e−(k/b)

a

− e−((k+1)/b)a
]
.

As with the other distributions, we estimate this distri-
bution’s parameters using standard numerical maximiza-
tion routines.

Appendix D: Likelihood-ratio tests

The power-law models were compared with the alter-
natives using a set of likelihood-ratio tests. For each
alternative distribution, we obtained the log-likelihood
LAlt of the best fit. The difference between this value
and the log-likelihood of the power-law fit to the same
observations yields the likelihood ratio test (LRT) statis-
tic R = LPL − LAlt.

When R > 0, the power law is a better fit to the data.
Similarly, when R < 0, the alternative distribution is
the better fitting model. Crucially, when R = 0, the
test is inconclusive, meaning that the data cannot dis-
tinguish between the two models. The test statistic R,
however, is itself a random variable, and hence is subject
to statistical fluctuations. Accounting for these fluctua-
tions dramatically improves the accuracy of the test by
reducing both types of incorrect decision rates [31]. As
a result, the sign of R alone is not a reliable indicator
of which model is a better fit. The now standard ap-
proach for controlling for this uncertainty is to calculate
a p-value against the null model of R = 0. Only if that
model can be rejected, is the sign of R meaningful [41].
In this setting, if p < 0.1, then the absolute value of R is
sufficiently far from 0 that its sign is interpretable.

We obtain this p-value with the same method used in
Ref. [31], originally proved valid in Ref. [41]. Note that

R = LPL − LAlt

=

n∑
i=1

[ln pPL(ki)− ln pAlt(ki)]

=

n∑
i=1

[
`
(PL)
i − `(Alt)

i

]

where `
(PL)
i is the log-likelihood of a single observed de-

gree value ki under the power-law model, and n is the
number of empirical observations being used by a model
(in our setting, this number is ntail, but we omit that
annotation to keep the mathematics more compact).

We have assumed that the degree values ki are inde-
pendent, which means the point-wise log-likelihood ra-

tios `
(PL)
i − `(Alt)

i are independent as well. The central
limit theorem states that the sum of independent random
variables becomes approximately normally distributed as
their number grows large, and that this normal distribu-
tion has mean µ and variance nσ2, where σ2 is the vari-
ance of a single term. This distribution can be used to
obtain the p-value, but requires that we first estimate µ
and σ2. Note that we assume µ = 0 because the null
hypothesis is R = 0. We then approximate σ2 as the
sample variance in the observed R

σ2 =
1

n− 1

n∑
i=1

[(
`
(PL)
i − `(Alt)

i

)
−
(

¯̀(PL)
i − ¯̀(Alt)

i

)]2
,
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where

¯̀(PL)
i =

1

n

n∑
i=1

l
(PL)
i and ¯̀(Alt)

i =
1

n

n∑
i=1

`
(Alt)
i

are sample means.
Under this null distribution, the probability of observ-

ing an absolute value of R at least as large as the actual
test statistic is given by the two-tail probability

p =
1√

2πnσ2

[∫ −|R|
−∞

e−
t2

2nσ2 dt+

∫ ∞
|R|

e−
t2

2nσ2 dt

]
. (D1)

Hence, following standard practice [31], if p ≤ 0.1, then
we reject the null hypothesis that R = 0, and proceed by
interpreting the sign of R as evidence in favor of one or
the other model.

Appendix E: Evaluating the method on synthetic
data with ground truth

We tested the method on synthetic data sets to see
if we recover ground truth structure. We generated 100
random 5000-node networks by each of three methods.
We expect two of the methods, preferential attachment
[42] and vertex copying [43], to generate scale-free net-
works, and Erdős-Rényi random graphs not to.

The first method, preferential attachment [42], is one
of the most commonly referenced scale-free generating
mechanisms. The process is as follows. We begin with a
4-node directed network, in which each node has 3 out
edges, one to each of the other nodes. We then add one
node at a time until we reach a total of 5000 nodes in
the network. Each added node forms 3 out edges. For
each edge, with probability p = 2/3 the connection is
formed preferentially. That is, the new node connects to
an existing node with probability proportional to the in-
degree of that node. With probability 1 − p = 1/3, the
connection is uniform, where each existing node has equal
probability of receiving the new edge. We expect the in-
degree sequence of the final graph to follow a power-law
distribution, while the out degree of every node is 3. In
our processing, we extract the in-, out-, and total-degree
sequences. We’d expect that most of the time the total-
degree sequence will also look power-law, since it is the
sum of a power law and a constant distribution.

We find 87% of the preferential attachment graphs
fall into the Super-Weak category. Further, if we do
not consider the power law with cutoff as an alterna-
tive model, this increases to 98%. This means 98% of
the time, a power-law model is favored over alternatives
for these graphs. When we consider the plausibility of
the power-law fit, we see fewer networks. 62% of the
preferential attachment graphs fall into the Weakest and
Weak categories, 60% in the Strong category, and 0 in
the Strongest category. This is not entirely unexpected,
however. Each of these graphs is directed and splits

into three degree sequences: one each for in-degree, out-
degree, and total degree. As predicted by the literature,
the in-degree sequences are usually plausibly power-law
(80%), while the out-degree sequences never are, and the
total degree sequences are again usually but not always
power-law (74%). This accounts for the variance and
lower-percentage of networks showing direct power-law
evidence. This also implies that the preferential attach-
ment mechanism does better at generating networks for
which a power law is a better fit than alternatives, than at
generating genuinely power-law networks. The absence
of graphs in the Strongest category is due to the fact
that this category requires that 90% of associated sim-
ple graphs be plausibly power-law, and this generating
mechanism gives at best 67%.

The vertex-copying method [43] is also expected to
generate scale free structure. We again start with a 4-
node directed network, each node connected to the other
3. We add nodes one at a time until we reach 5000 total
and for each follow the same procedure. Pick an existing
node u at random. For each out-edge that u has, copy it
to the new node v with probability q = 0.6. With prob-
ability 1 − q = 0.4, attach uniformly to one of the other
nodes. Each node has out-degree 3. When we process
this graph we expect again a power-law in-degree distri-
bution and usually a power-law total-degree distribution.

The results are consistent with what we expect. 88%
of the vertex-copying graphs are Super-Weakly scale-free,
which jumps to 99% if we ignore power-law with cutoff.
74% fall into the Weakest and Weak categories, meaning
the power law is plausible with at least 50 points in the
tail of the degree sequence. 70% fall into the Strong
category. Since out-degree sequences are never plausibly
power-law we have none in the Strongest category.

Erdős-Rényi random graphs are simple and are gener-
ally known to have thinner-tailed degree distributions.
To generate these graphs, we add n = 5000 nodes
and then for every possible edge, there is a probability
p = c/(n− 1) of connection, where c is the desired mean
degree. We chose c = 6, so p = 6/4999 ≈ 0.0012. We
expect the majority of these to follow thinner-tailed dis-
tributions than the power law.

The Erdős-Rényi random networks indeed have very
different results. Only 16% are Super-Weak, though
this increases to 31% without the power law with cut-
off as an alternative. This indicates that these networks
have thinner-tailed degree distributions. 51% and 50%
of these networks fall into the Weakest and Weak cate-
gories, respectively, but because the best-fit α-values are
all large (the smallest is 7.55), none fall into the Strong
or Strongest categories. This is again consistent with the
thin-tailed nature of these networks. We may have ex-
pected to see a smaller fraction of these networks falling
into the Weak categories, but this result indicates how
inclusive these two categories are.

As our methods were able to fairly well recover the
ground truth when tested on these synthetic networks, we
feel confident in our results for the real-world networks.
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