
Analyzing the Efficiency of BitTorrent

and Related Peer-to-Peer Networks

David Arthur∗, Rina Panigraphy†

March 30, 2005

Abstract

We analyze protocols for disseminating a collection of data blocks over a network of peers
with a view towards BitTorrent and related peer-to-peer networks. Unlike previous work, we
accurately model the distribution of the individual data blocks, a process which is critical to
the parallelism that makes BitTorrent successful in practice. We also consider multiple network
topologies and routing algorithms.

We first show several routing algorithms will distribute n data blocks on a network with
diameter d and maximum degree D in O(D(d + n)) phases of concurrent downloads with high
probability. This is optimal within a factor of D. We also specialize to the networks used
by BitTorrent and improve this bound to approximately O(n ln m) phases. Finally, we discuss
several practical extensions to BitTorrent, one of which improves this bound to a near optimal
O(n + (ln m)2) phases.

1 Introduction

Over the last few years, BitTorrent [3] has emerged as a popular method for sharing data. Each
file is distributed on its own network as a number of independent data blocks. A client can share
individual data blocks it has fully downloaded even if it has not finished downloading the entire
file. This allows for a parallelism that is impossible if entire files are treated as atomic blocks.

The parallelism is most severely tested under “flash crowd” settings when a large number of
clients join a network almost simultaneously. This does happen in practice and it creates a large
demand on downloads without immediately increasing the system’s upload capacity. Empirical
evidence suggests the relatively simple routing policy used by BitTorrent is quite effective even in
these situations [2]. Clients rarely have to wait long before finding a neighbor they can download
from and the data distribution progresses quickly.

In this paper, we investigate this phenomenon from a theoretical perspective. We model a
BitTorrent-like network as a graph of clients where, at each time step, each client can upload up to
one data block to a neighboring client and each client can download up to one data block from a
neighboring client. Unlike previous work, we simultaneously model each block’s progress through
the network and we can thus accurately model when a client can download a new data block from
its neighbors. Within the context of this model, we first show bounds that help explain BitTorrent’s
success and we then discuss modified routing policies that perform even better.

We first consider a few simple deterministic routing policies and a natural randomized policy
based on BitTorrent’s protocols. We show that all of these algorithms will share n data blocks on
a network with diameter d and maximum degree D in O(D(n + d)) time steps. This is optimal

∗Supported in part by an NDSEG Fellowship, NSF grants EIA-0137761 and ITR-0331640, and an SNRC grant.
†Supported in part by an SGF Fellowship, NSF grants EIA-0137761 and ITR-0331640, and an SNRC grant.

1



within a factor of D. Although they are not always practical, this also leads to a class of routing
algorithms that use an optimal O(n + ln m) time steps on random regular graphs with m vertices.

We also specialize our analysis to the graphs used by BitTorrent in practice. On such graphs, we
show the natural randomized routing policy will share n data blocks among m clients in O(n ln m)
time steps with high probability. Finally, we discuss several extensions to BitTorrent, one of which
leads to a practical routing algorithm that requires a near optimal O(n + (ln m)2) time steps.

In Section 1.1, we review related work on the subject. In Section 2, we describe our model. In
Section 3, we show the O(D(n+d)) bound for a few deterministic routing algorithms. In Section 4,
we extend this analysis to include the natural randomized routing algorithm. In Section 5, we prove
the O(n + (ln m)2) bound for BitTorrent-like graphs. Finally, in Section 6, we consider extensions
to BitTorrent.

1.1 Related Work

There have been several empirical studies of BitTorrent, which demonstrate that its routing algo-
rithm works well in practice. Izal et al. [9] and Pouwelse et al. [11] measure the performance of
existing BitTorrent systems and show them to be efficient. Bharambe et al. [2] and Gkantsidis and
Rodriguez [7] build simulations to measure the protocol’s efficiency in a controlled setting. They
are able to isolate some suboptimal behavior and they suggest several ways of avoiding it.

There has been some theoretical work as well. Qiu and Srikant [12] apply flow analysis to
BitTorrent-like networks and prove some bounds on download times. However, they assume the
data blocks each client has available for download at each time step is random and independent,
which is certainly not true in practice. They also focus on the asymptotic behavior of a network
with constant arrival and departure rates, and in particular, they do not consider flash crowds.

Yang and de Veciana [13] consider flash crowds under two different models. The first one allows
very strong results but, like [12], it ignores the network topology and the data distribution, and it
assumes an idealized upload policy that does not generalize to unstable graphs. The second model,
although more realistic in many ways, assumes that the distribution of one data block will not slow
down the distribution of other data blocks. As with [12], this is not

2 Modeling BitTorrent

We begin by reviewing BitTorrent’s protocol and then modeling it and similar protocols. At the
end of the section, we also analyze the networks that BitTorrent uses in practice.

2.1 BitTorrent Review

We begin by reviewing BitTorrent’s protocol [4] and by constructing a model that captures its
essential features. In general, BitTorrent distributes large files, called torrents, each on a separate
network. A torrent is broken up into a large number of smaller blocks, each between around 32K
and 256K, and these are then shared independently. Thus, a client which has not downloaded the
entire file may still have completely downloaded several blocks, and it can then upload these to
other clients. This allows clients to share the workload even as they are still downloading.

For each torrent, there is a corresponding central component called a tracker. When a client
wishes to download the torrent, it contacts the tracker. The tracker then returns a random subset
of 50 existing clients, which we call the client’s neighbors. If the number of neighbors of a client
ever falls below 20, the client may request a new set of neighbors from the tracker.

At any given time, a client attempts to upload to five of its neighbors. One of these neighbors
is chosen at random, while the other four are chosen using a tit-for-tat system. Specifically, a client
will attempt to upload to neighbors from which it is downloading fastest. When a client has a
choice about what to download from a neighbor, it usually chooses the block that is least replicated

2



among its other neighbors. There are a couple exceptions to this last rule, however, primarily
among clients downloading their first block. This will not affect our analysis, however.

2.2 The Model

We are interested primarily in the routing itself, and thus we model only those aspects of BitTorrent
that are directly relevant. In particular, we ignore the tit-for-tat scheme and we assume all clients
have equal bandwidth.

We model the problem as that of routing data blocks on a directed graph over discrete time
steps. Each vertex will begin with copies of certain data blocks. Then, during each time step, each
vertex will choose one of its outgoing edges and then offer to upload along that edge. Each vertex
can then accept up to one such offer and download up to one block each time step. We assume that
for each block b and each vertex v, there is a path from a vertex containing b to v. This guarantees
that every vertex can eventually download every data block. We ask how many time steps this will
take. This might be further complicated by clients joining and leaving the network in the middle
of the routing. We do not model this process directly, but for each major result, we discuss the
stability assumptions it requires.

Surprisingly, the policy that vertices use to choose which block to download is largely incon-
sequential to our analysis. We will always assume that if a vertex is offered at least one upload,
it will download something. Beyond that, we will never make any assumptions on the download
policy. Thus, we need not be concerned about BitTorrent’s policy of downloading the blocks that
are least replicated among a client’s neighbors and the exceptions that go with this rule.

The upload polciy, the underlying graph structure and the initial starting distribution of the
data blocks all prove more important and we will consider varying them in a number of ways. We
consider only oblivious upload polcies that do not require a centralized component to coordinate
actions.

Finally, we introduce some notation that will be used throughout the paper.

• Let G denote the directed graph upon which we are routing, and let m denote the number of
vertices in G.

• Let n denote the number of distinct data blocks.

• Let nv denote the number of blocks that vertex v has a copy of. Also, let nt,v denote the
value of nv after t time steps.

• Let the distance between a block b and a vertex v denote the length of the shortest path from
a vertex containing b to v. Also, let d denote the maximum such distance over all pairs (b, v).

• Let D denote the largest out-degree of any vertex in G.

• Let T denote the number of time steps before the routing completes.

2.3 The BitTorrent Graph

The networks that BitTorrent constructs are, not surprisingly, particulary effective for routing. In
this section, we prove several properties of these graphs.

We call a graph a BitTorrent-C graph (C ≥ 2) if it is constructed by the following process.

1. Begin with C vertices, v1, v2, . . . , vC with edges from vi to vj if and only if i < j.

2. While the total number of vertices is less than m, add a vertex and add edges from C existing
vertices chosen at random to the new vertex.

3



Note that BitTorrent uses BitTorrent-50 graphs.
For any i, let m(i) denote the median j such that there is an edge from vj to vi. Also, recursively

define mk(i) = m(mk−1(i)) for k > 0 and m0(i) = i for. We define the “median depth” of vi to
be the smallest k such that mk(i) = 1. Clearly, the distance from v1 to vi is at most the median
depth of vi.

Lemma 2.1. With probability 1− 2
m

, the median depth of every vertex in a BitTorrent-C graph is
at most 3 lg m, and the maximum out-degree in the graph is at most 3C(ln m + 1).

Proof. Consider a vertex vi and let Xj = mj(i)
mj−1(i)

. Note that, by symmetry, E[Xj ] = 1
2 and hence by

independence, E
[

Π3 lg m
j=1 Xj

]

= 1
m3 . The median depth of vi is at most k if and only if Πk

j=1Xj ≤ 1
i
.

Thus, it follows from Markov’s inequality that vi has median depth at most 3 lg m with probability
at least 1 − 1

m2 . Therefore, with probability 1 − 1
m

, every vertex has median depth at most 3 lg m.

Also, the probability that there is an edge from vi to vj is C
j
. For each i, the out-degree of vi is

thus stochastically dominated by the sum of independent random variables X1,X2, . . . ,Xm where
Xj is 1 with probability C

j
and 0 otherwise. This sum has mean between C ln m and C(ln m + 1).

Thus, by the Chernoff bounds [8], the out-degree for vi is at most 3C(ln m + 1) with probability
(

e2

(3C)3

)C(ln m+1)
< 1

m2 since C ≥ 2. The result now follows as above.

The constants on the maximum out-degree can be tightened further, but in the interests of
simplicity, we will use this bound.

3 Delay-x Upload Policies

In this section, we consider a large class of upload policies with particularly nice properties. Using
this, we show a simple routing algorithm that always runs in O(D(n+d)) time steps on any graph.
We also show how to use this to find near optimal routing algorithms for random regular graphs.

Definition 3.1. Suppose there is an edge from a vertex u to a vertex v and u has a block that v

does not. We say an upload policy is “delay-x” if it guarantees that u will offer to upload to v in
at most x time steps.

For example, consider the upload policy where each vertex repeatedly cycles through its out-
edges in the same order and offers to upload along each one in turn. This is clearly delay-D.
Although it is not strictly speaking part of our model, we may also consider the case where a vertex
uploads to all of its neighbors simultaneously at a fraction of the speed. This is also delay-D.
Finally, consider the upload policy where each vertex attempts to upload to a random neighbor.
One can check that this is delay-D(ln n + 3 ln m) with probability at least 1 − 1

m
.

3.1 On Sparse Graphs

In this section, we show that if x is small, delay-x upload policies perform well on any graph with
any initial block distribution. We have only shown the existence of such upload policies on sparse
graphs, but as shown in Section 2.3, this includes the graphs that BitTorrent uses in practice.
Furthermore, in the next section, we show how to extend these results to some other classes of
graphs.

Lemma 3.1. Suppose that n0,v ≥ k for all v and that we rout using a delay-x upload policy. Let
S denote the set of blocks within distance δ ≥ 1 of some vertex v, and let Tv denote the first time
step after which v has downloaded every block in S. Then, for each t ≤ Tv,

nt,v ≥

⌊

t

x

⌋

+ k + 1 − δ.

4



Proof. We define an “epoch” to be x time steps. Note that if, at the beginning of an epoch, there
is an edge from u to v and if u has more blocks than v has, then v must download some block
during the epoch. This follows from the fact that u must offer to upload to v at some time step
during the epoch, and then v must download some block during that time step.

Using this, we prove the claim by induction on δ + t. If t < x, the result is trivial. If δ = 1, then
as long as t < Tv, we know v must download a block during each epoch as noted above. Hence,
nt,v ≥

⌊

t
x

⌋

+ k, as claimed.
Now, consider x0 ≥ 2 and t0 ≥ x. Suppose the result holds for x + t < x0 + t0, and we will

show it holds for (x, t) = (x0, t0). Towards that end, let N denote the set of vertices that have an
edge to v. For u ∈ N , let T ′

u during the first time step after which u has downloaded all the blocks
beginning within a distance δ − 1 of u. Finally, let T ′

N = max{Tu|u ∈ N}.
If t − x ≥ T ′

N , then all of the blocks in S had a copy in N throughout the last x time steps.
It follows that if x ≤ Tv, then v must have downloaded a block during the last epoch. Thus,
nt,v ≥ nt−x,v + 1 ≥

⌊

t
x

⌋

+ k + 1 − δ by our inductive hypothesis. This completes the proof of the
inductive step in this case.

On the other hand, if t − x < T ′
N , then there exists some u with T ′

u > t − x. It then follows
from our inductive hypothesis that nt−x,u ≥

⌊

t
x

⌋

+ k + 1 − δ and nt−x,v ≥
⌊

t
x

⌋

+ k − δ. If equality
holds in the latter case, then once again, it follows that v must have downloaded a block in the last
epoch. Thus, nt,v ≥

⌊

t
x

⌋

+ k + 1 − δ, and the inductive step follows.

Theorem 3.2. Let k = minn0,v over all vertices v. If we rout using a delay-x upload policy, then

max(n − k, d) ≤ T ≤ x(n − k + d − 1).

Proof. The lower bound on T follows immediately from the fact that nv can increase by at most
one each time step while the distance between a block and a vertex can decrease by at most one
each time step. On the other hand, we know from Lemma 3.1 that for each vertex v,

nx(n−k+d−1),v ≥

⌊

x(n − k + d − 1)

x

⌋

+ k + 1 − d

= n,

and the result follows.

In practice, we would expect d = O(ln m) and n = ω(ln m) so the bound in Theorem 3.2
is approximately xn. Thus, we have constructed oblivous upload policies that are guaranteed to
take no more than approximately Dn time steps. Conversely, for any D, there exist graphs where
any routing will require at least Dn time steps. For example, consider the graph with vertices
v1, v2, . . . , vD+1 and with edges from vi to vj if and only if i = 1 and j > 1. If v1 begins with a
copy of every block and none of the other vertices begin with any blocks, it is easy to check that a
routing can only complete after v1 participates in Dn different uploads.

Also, while Theorem 3.1 can easily be shown in the special case where one vertex begins with
every data block, this assumption is not required. Thus, in BitTorrent, even if the initial server were
disconnected, the file sharing could continue efficiently as long as all the data existed somewhere
in the network. More generally, it is easy to see the proof of Theorem 3.1 is fairly stable during
network mutations. Specifically, as long as there exist paths of length at most d from each data
block to each vertex that remain connected throughout the routing, the result continues to hold
even as other vertices are removed.

Finally, we apply Theorem 3.2 to BitTorrent-C graphs.

Corollary 3.3. If clients alternate uploads among their neighbors in a predetermined order on a
BitTorrent-C graph, then

T ≤ 3C(ln m + 1)(n + 3 lg m − 1)

5



with probability 1 − 2
m

.

Proof. This follows immediately from Theorem 3.1 and Lemma 2.1.

As commented on above, we would usually expect n to be much larger than lg m, so this reduces
to approximately 3Cn lnm.

3.2 On Other Graphs

Although it is a strong result for sparse graphs, Theorem 3.2 weakens very quickly as the maximum
degree increases. By changing the policy slightly, however, it can still be applied successfully to
very dense graphs.

Proposition 3.4. Suppose G is chosen randomly from the set of D-regular graphs (D ≥ 3) on n

vertices. Consider the upload policy where each vertex chooses 3 neighbors at random, and then
cycles upload requests through just these neighbors. Then, routing will complete with this upload
policy in 3n + O(ln m) time steps with high probability, regardless of the initial block distribution.

Proof. By having each vertex restrict its uploads to just 3 neighbors, we have essentially reduced
G to a random 3-regular graph. By [5], such a graph is connected and has diameter O(ln m) with
high probability. The result now follows immediately from Theorem 3.2.

This bound is, in fact, essentially optimal for routing on any graph. If every block begins at
one vertex, it will take log m time steps before every vertex has downloaded at least one block.
Similarly, it will take n time steps before a vertex beginning with 0 blocks can download every
block. Thus, routing will always take at least max(n, log m) ≥ 1

2(n + log m) time steps on any
graph.

On the other hand, the algorithm described in Proposition 3.4 may seem a little artificial. In
particular, intuition suggests it should not be any better than the more natural algorithm where
each vertex uploads to a random neighbor at each time step. In fact, it is better, as shown in the
following proposition.

Proposition 3.5. Suppose a routing uses the upload policy of uploading to a random neighbor at
each time step, and suppose the download policy ensures a client is equally likely to download any
of the data blocks offered by a single upload request.

Then, the routing will require an expected ω(n+ln m) time steps on a complete graph where one
vertex u begins with every block and the other vertices begin with nothing.

Proof. Omitted.

3.3 Unbounded Uploads and Gossip

It is worth noting that Theorem 3.2 almost completely solves a related problem. Suppose we modify
our model so that a vertex can upload simultaneously at full speed to all of its neighbors. This is
unrealistic for file sharing but it has some theoretical interest as a gossip problem. Then, Theorem
3.2 guarantees that regardless of what block each vertex downloads at each time step, the routing
will complete in at most twice the optimal time. Furthermore, the upper bound is tight in the
sense that if every vertex begins with a unique block, there always exists a routing scheme that
completes in precisely n − k + d − 1 = n + d − 2 time steps.

6



4 Randomized Uploads

In this section, we consider the upload policy where each vertex attempts to upload to a random
neighbor at each time step. As discussed at the beginning of Section 3, this is delay-D(ln n+3 lnm)
with high probability. Thus, Theorem 3.2 shows routing with this upload policy requires at most
D(ln n + 3 ln m)(n + d) time steps. Since the randomized upload policy is so natural, and since it
is tied to what BitTorrent does in practice, we improve this bound to O(D(n + d)) in this section.

4.1 A Reduced Problem

We will reduce the analysis of random upload policies to the case of a path. It is convenient,
however, to analyze this simpler problem before presenting the reduction.

Towards that end, consider vertices, v0, v1, . . . , vl. We distribute n indistinguishable coins among
these vertices. Let xi = j if coin i is at vertex vj , and without loss of generality, assume xi ≤ xi+1

for all i. Now, we fix a probability p, and at each time step, we let xi increase by 1 with probability
p if xi+1 > xi. We call this coin movement an output from vi and an input to vi+1. These random
choices are made independently for each coin. Finally, let the random variable Txi,n,l,p denote the
number of time steps before every coin reaches vl.

Lemma 4.1. Suppose x′
i ≥ xi for all i. Then Txi,n,l,p stochastically dominates Tx′

i,n,l,p.

Proof. We prove this by induction on kxi
=

∑n
i=1 l − xi. When kxi

= 0, the claim is trivial. Now
suppose it holds for kxi

< k and consider a configuration with kxi
= k.

Let X denote the configuration specified by xi and let X ′ denote the configuration specified by
x′

i. In both cases, we imagine choosing independently for each coin whether to try to increase xi.
Then, we actually increase xi only if xi+1 > xi. Clearly, this process is identical to the given one.

We consider the result of a particular set of choices simultaneously for X and X ′. Fix some
i. If x′

i > xi initially, then after this time step, we will still have x′
i ≥ xi. Conversely, suppose we

start with x′
i = xi. If we choose not to try to increase xi, then clearly we will still have x′

i = xi at
the end of the time step. Otherwise, since x′

i+1 ≥ xi+1, we will increase xi only if we increase x′
i.

Thus, in any case, we will still have x′
i ≥ xi at the end of the time step.

We may ignore the case where neither xi or x′
i change for any i as that simply brings us

back where we started. In the remaining cases, it follows from the inductive hypothesis that the
time remaining for X after one time step stochastically dominates the time remaining for X ′ after
one time step. The inductive step follows from combining these results for each set of random
choices.

This proves the intuitive result that moving a coin forward can only decrease the amount of
time remaining. Thus, suppose that instead of starting all the coins at v0, we start v0 with 0 coins
and then feed a coin to v0 with probability q < p independently at each time step. It follows
from Lemma 4.1 that this only increases the amount of time before vl obtains n coins. Now, the
number of coins at v0 can be modeled as a Markov chain, which reaches a steady state since q < p.
Furthermore, since the graph of states for this Markov chain is a tree, the process is reversible.
Thus, as with Burke’s theorem in the analagous case of an M/M/1 queue, the following two facts
are true.

1. In the steady state, the probability that a coin is moved out of v0 is q.

2. If v0 is in the steady state, then v0 will be in the steady state in the next time step regardless
of its output.

The first claim follows immediately from reversability. For the second claim, suppose v0 just output
a coin. The probability that v0 has i coins in this case is, by reversability, equal to the probability

7



that v0 has i coins given that it is just about to be input a coin. The claim now follows from the
fact that the input is independent of the number of coins already in v0. The case whre v0 did not
output a coin follow similarly.

More generally, we can consider the Markov chain with states giving the number of coins in
each of v0, v1, . . . , vl−1.

Lemma 4.2. Let ni denote the number of coins at vi. Then, the steady state of the given Markov
chain occurs when each ni is independently distributed as follows.

ni =

{

0 with probability p−q
p

,

j with probability (p−q)qj(1−p)j−1

pj+1(1−q)j for j > 0.

Proof. We first consider the case where l = 1. Let πi,j denote the probability of transitioning from
n0 = i to n0 = j in one time step, and let pj denote the probability that n0 = j in the steady
state. Then, by reversability, pj+1 = pj

πj,j+1

πj+1,j
. Now, π0,1 = q, πj,j+1 = q(1 − p) for j > 0, and

πj+1,j = p(1− q) for all j. Combining this with the fact that
∑∞

j=0 pj = 1, we find that the steady
state for n0 is as claimed.

For the general case, suppose the ni are distributed as described above. Then, after one time
step, each ni individually will still be distributed as above since they each receive an input coin
with probability q. Furthermore, since ni does not depend on previous output from vi, the ni are
still independent. The result follows.

We now have the tools to analyze Txi,n,l,p.

Proposition 4.3. If l′ ≥ l, then Txi,n,l,p ≤ 8l′+4n
p

with probability at least 1 − 2 exp
(

− l′

2

)

.

Proof. Clearly, Txi,n,l′,p stochastically dominates Txi,n,l,p so it suffices to prove the claim when l′ = l.
Again, we assume the coins are fed to v0 with probability q at each time step and we ask how

long it takes for n of these coins to reach vl. However, we now assume q = p
2−p

, which, as required,
is less than p as long as p < 1. Furthermore, we add a random number of dummy coins at each vi

so that the Markov chain described in Lemma 4.2 is already in the steady state. Lemma 4.1 implies
that the time for n coins to go from v0 to vl in this scenario stochastically dominates Txi,n,l,p.

Let A denote the total number of coins on all of the vertices of a random instance of the
Markov chain in its steady state. Then, A =

∑l−1
i=0 ni where ni is specified as in Lemma 4.2. Note

that for j ≥ 1, P [ni ≥ j] =
(

q(1−p)
p(1−q)

)j−1
· (p−q)q

p2(1−q)
· 1

1−
q(1−p)
p(1−q)

, which simplifies to q
p·2j−1 < 1

2j−1 . It

follows that ni is stochastically dominated by a geometric distribution with mean 2. Therefore, by
the Chernoff bounds for the negative binomial distribution [10], A is at most 2l with probability

1 −
(

24

33

)l

> 1 − exp
(

− l
2

)

.

Now, the number of coins that vl receives in k time steps is precisely the sum of k independent
random variables that are 1 with probability q and that are 0 otherwise. Thus, if k = 4l+2n

q
, the

standard Chernoff bounds imply vl receives 2l+n coins with probability at least 1− exp
(

−2l+n
4

)

>

1 − exp
(

− l
2

)

.

The result now follows from the fact that 4l+2n
q

≤ 8l+4n
p

.

4.2 The Reduction

We now return to the case of routing with a randomized upload policy on a general graph G. As
before, we let D denote the maximum out-degree in G.

8



Lemma 4.4. Suppose that some vertex u in G begins with a copy of every block. Then, fix a vertex
v and let u = v0, v1, v2, . . . , vl = v be a path from u to v. Also, let nj denote the number of blocks
that vj has a copy of, and let xi = max{j| nk ≥ n + 1 − i ∀k ≤ j}. Finally, let Tv denote the
number of time steps before v has downloaded a copy of every block.

Then, Txi,n,l, 1
D

stochastically dominates Tv.

Proof. Once again, we prove this by induction on kxi
=

∑n
i=1 l − xi. When kxi

= 0, the claim
is trivial. Now suppose it holds for kxi

< k and consider a configuration with kxi
= k. Let X

denote this routing problem, and let X ′ denote the corresponding stochastic process described in
the previous section.

Consider some i for which xi+1 > xi. By definition of xi, we know nxi
≥ n + 1− i > nxi+1. On

the other hand, since xi+1 > xi, we can further say that nxi+1 = n − i. Now, vxi
will request an

upload to vxi+1 with probability at least 1
D

. If this happens, nxi+1 will increase to n − i + 1 and
hence, xi will increase by at least 1.

Note this depended only on where vxi
requested an upload, which is independent of vj ’s upload

request for j 6= xi. Thus, for each i satisfying xi+1 > xi, we may define indicator variables with the
following properties.

1. Ai is 1 with probability 1
D

and 0 otherwise.

2. If Ai = 1, then vxi
requested an upload to vxi+1 and xi increased by at least 1.

3. Ai is independent of Aj for j 6= i.

There is now a natural correspondence between whether Ai = 1 in X and whether xi increases
in X ′. Note xi can never increase by more than 1 in X ′ and when that happens, Ai = 1, and xi

increases by at least 1 in X. For each set of values of A, it follows that from our inductive hypothesis
and from Lemma 4.1 that the remaining time for X ′ stochastically dominates the remaining time
for X. The inductive steps follows from combining these results for each set of values for Ai.

We can now state our main result for the randomized upload policy.

Theorem 4.5. Suppose a vertex u begins with a copy of every block. Let D denote the maximum
outdegree in G, and suppose the distance from u to every other vertex is at most d.

If we rout on this graph using the randomized upload policy, then T ≤ 4D(2d+n) with probability
at least 1 − 2m exp

(

−d
2

)

.

Proof. This follows immediately from Proposition 4.3 and Lemma 4.4.

Since the proof of this theorem restricts to a single path, it holds as long as there exist paths
from the original server to every other vertex that remain throughout the routing, even as other
vertices are deleted. Also, as with Theorem 3.2, this result can be trivially improved when every
vertex begins with a non-zero number of data blocks.

Finally, we apply Theorem 4.5 to BitTorrent-C graphs.

Corollary 4.6. Let G be a BitTorrent-C graph where the initial vertex begins with a copy of every
block. If we rout on G using a randomized upload policy, then T ≤ 12C(ln m + 1)(n + 6 lg m) with
probability at least 1 − 4

m
.

Proof. By Lemma 2.1, G has maximum degree at most 3C(ln m+1) and depth at most 3 lg m with
probability 1 − 2

m
. Therefore, by Theorem 4.5, T ≤ 12C(ln m + 1)(n + 6 lg m) with probability at

least 1 − 2
m

− 2m exp
(

−3 lg m
2

)

≥ 1 − 4
m

.

In most applications, we would again expect n to be much larger than lg m, so this reduces
to approximately 12Cn ln m. A variant of Proposition 3.4 follows immediately for a randomized
upload policy that restricts to just 3 neighbors.

9



5 A Tighter Analysis for BitTorrent-like Graphs

All of our previous results, when applied to BitTorrent-C graphs, are heavily dependent on C. This
dependence is not entirely necessary, and in this section, we show how to strengthen our results for
BitTorrent-C graphs.

Suppose a graph has the following properties.

1. Every vertex has out-degree at most D.

2. The vertices can be partitioned into sets X1,X2, . . . ,Xd such that every vertex in Xi has at
least A in-edges originating in X1 ∪ X2 ∪ . . . ∪ Xi−1.

We will call such a graph an “A-D-d tree”.
Now, consider a BitTorrent-C graph G and recall the definition of median depth from Section

2.3. We can similarly define the “median X0 depth” of vi to be the number of median edges that
must be followed from vi before reaching one of the initial C vertices. We partition the vertices
of G into sets Xi by letting X0 = {v1, v2, . . . , vC} and for i > 0, letting Xi contain the vertices
with median X0 depth of i. It follows from Lemma 2.1 that G is an A-D-d tree with A = C

2 ,
D = 3C(ln m + 1) and d ≤ 3 lg m with probability 1 − 2

m
.

We now show the number of time steps for routing on an A-D-d tree with certain initial block
distributions depends on D

A
, rather than just D.

Theorem 5.1. Let G be an A-D-d tree and suppose all the vertices in X0 begin with a copy

of every block. With the standard random upload policy, routing will complete in at most
2D

A

1− 1
e

·

(d(4 ln n + 8 ln m) + n) time steps with probability at least 1 − 1
m

.

Proof. Let C be an arbitrary constant. We say epoch k begins when every vertex in Xi has at least
C(k− i) blocks for each i. Note that epoch 1 begins at the first time step and the block distribution
ends at the end of epoch d + n

C
.

Consider a vertex v ∈ Xi during epoch k. Suppose v has less than C(k − i + 1) blocks. Then,
every vertex in Xj for j < i has more blocks than v. We know at least A of these vertices have edges
to v, so it follows that v will download a block in the next D

A
time steps with probability at least

1− (1− 1
D

)A·D
A ≥ 1− 1

e
. Thus, as long as v has less than C(k− i + 1) blocks, the number of blocks

that v downloads in kD
A

time steps stochastically dominates the sum of k independent random
variables that are 1 with probability 1 − 1

e
and 0 otherwise. Since v has at least C(k − i) blocks

at the beginning of epoch i, it follows from the Chernoff bounds that v has at least C(k − i + 1)

blocks
2C D

A

1− 1
e

time steps after the beginning of epoch i with probability at least 1 − exp(−C
4 ).

There are m vertices, and each one must increase its number of blocks by C at most n
C

≤ n

times. Thus, with probability at least 1−mn exp
(

−C
4

)

, it holds for each i and k that each vertex in

Xi will have at least C(k−i+1) blocks within
2C D

A

1− 1
e

time steps after the start of epoch k. Therefore,

with probability 1 − mn exp
(

−C
4

)

, each epoch will last at most
2C D

A

1− 1
e

time steps, and the process

completes in at most

2C D
A

1 − 1
e

·
(

d +
n

C

)

=
2D

A

1 − 1
e

· (dC + n)

time steps. In particular, the desired result follows from taking C = 4 ln n + 8 ln m.

As vertices are added and deleted, this result will hold as long as the graph remains an A-D-d
tree. On BitTorrent, a vertex’s neighbors are chosen randomly, so it is very unlikely that they
would all disconnect very early. Furthermore, if a vertex ever has in-degree less than twenty, it can

10



acquire new neighbors. Thus, with BitTorrent, the graph really does maintain its structure as an
A-D-d tree even as clients leave the system. It is also worth mentioning that, like the previous two
theorems, Theorem 5.1 can be trivially improved if every vertex begins with more than zero data
blocks.

Finally, we apply this result to BitTorrent-C graphs. Note that, in practice, the condition that
multiple clients begin with all the packets is quite natural. The initial seed on a torrent is likely to
have very good upload bandwidth so it can be approximated as multiple normal clients.

Corollary 5.2. Consider a BitTorrent-C network where the first C vertices begin with every data
block. If we rout using the standard randomized upload policy, the routing will complete in at most
9.5(ln m + 1)(n + 12(ln n)(ln m) + 24(ln m)2) with probability 1 − 3

m
.

Proof. As noted above, a BitTorrent-C graph is an A-D-d tree with A = C
2 , D = 3C(ln m + 1) and

d = 3 lg m with probability 1 − 2
m

. The result now follows from Theorem 5.1.

In most applications, we would again expect n to be much larger than (lg m)2, so this reduces
to approximately 9.5n ln m. In the next section, we show a related family of graphs for which this
bound achieves an even tighter result.

6 Extensions to BitTorrent

6.1 Smoothed BitTorrent-C Graphs

We first consider a practical variant of BitTorrent-C graphs, which performs even better in our
analysis. The “practical” condition here is very important. As shown in Section 3.2, there exist
algorithms that perform very well on random regular graphs, but such algorithms restrict to an
extremely sparse subgraph that could easily be disrupted by clients joining and leaving the system.
Similarly, we could modify a BitTorrent-C graph to always connect vertex i to the C vertices with
index closest to i

2 . This also performs extremely well in theory, but it is again extremely sensitive
to graph changes.

We define a more practical variant here, which we call a “smoothed BitTorrent-C” graph. As
before, we begin with C vertices v1, v2, . . . , vC with vi connected to vj if and only if i < j. Again,
we add the remaining vertices in order and connect each one to C previous vertices. In this case,
however, instead of choosing each previous vertex at random, we choose two previous vertices, and
connect the new vertex to the previous vertex with higher index. Finally, we will be interested in
the case where C = C0 ln m for a constant C0 ≥ 1.

Lemma 6.1. If C = C0 ln m, every vertex in a smoothed BitTorrent-C graph has median depth
O(log m) and out-degree O(C) with probability at least 1 − 2

m
.

Proof. Consider a vertex vi being added to the graph. We choose 2C vertices and then connect
half of them to C. In the worst case, the median edge to vi connects to the vertex with rank 1.5C
among the 2C vertices chosen. Thus, an argument similar to that used for Lemma 2.1 shows that
vi has median depth O(log m) with probability 1 − 1

m2 .
We now consider the out-degree of vertices. Again, consider vi being added to the graph, and a

vertex being chosen to connect to it. Then, vj is chosen with probability 2j−1
i2

. Thus, the probability

that there is an edge from vj to vi is at most 2C0j ln m
i2

. Again, these probabilities are independent
for distinct i. Thus, the out-degree of vj is stochastically dominated by the sum of independent

random variables Xj,Xj+1, . . . ,Xm where Xi is 1 with probability 2C0j ln m
i2

and 0 otherwise.

11



Now, note that

E





m
∑

i=j

Xi



 = 2C0j lnm

m
∑

i=j

1

i2

< 2C0j lnm





1

j2
+

m
∑

i=j+1

(

1

i − 1
−

1

i

)





< 2C0j lnm

(

1

j2
+

1

j

)

≤ 4C0 ln m.

It follows from the Chernoff bounds that
∑m

i=j Xi = O(C0 ln m) with probability 1 − 1
m2 .

Corollary 6.2. Consider a smoothed BitTorrent-C network where the first C vertices begin with
every data block. If we rout using the standard randomized upload policy, the routing will complete
in at most O(n + (ln m)2) time with probability 1 − 3

m
.

Proof. It follows from Lemma 6.1 that the graph is an A-D-d tree with A = C, D = O(C) and
d = O(ln m) with probability 1 − 2

m
. The result now follows from Theorem 5.1.

As noted before, the optimal running time is Ω(n + ln m), and in practice, we would expect n

to be much larger than ln m, so this bound is near optimal.

6.2 Streaming

To share streamed data, it must be guaranteed that data blocks will be downloaded in approximately
the correct order. Currently, BitTorrent does not support streaming in any way. It uses a download
policy that causes each client to usually choose a data block that is least replicated among its
neighbors, which in no way guarantees that data will arrive in any approximation of the correct
order.

On the other hand, our results all hold for any download policy. Thus, BitTorrent could switch
to the intuitively inferior policy of always downloading data blocks in order and it could still perform
well. This would cause a few practical problems, most notably that clients could leave the network
as soon as they downloaded the last block and thus downloading that block would become extremely
slow. If this issue were resolved, however, our work suggests streaming is entirely feasible.

References

[1] N. Bailey. The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press,
Second Edition, 1975.

[2] A. Bharambe, C. Herley, and V. Padmanabhan. Understanding and Deconstructing BitTorrent
Performance. Technical Report MSR-TR-2005-03, Microsoft Research, Jan. 2005.

[3] BitTorrent. http://bittorrent.com.

[4] BitTorrent Protocol Specification v1.0. http://wiki.theory.org/BitTorrentSpecification.

[5] B. Bollobás and F. De La Vega. The diameter of random regular graphs. Combinatorica, 2(no.
2):125-134, 1982.

12



[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart
and D. Terry. Epidemic algorithms for replicated database maintenance. Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, 1987.

[7] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content Distribution. Technical
Report MSR-TR-2004-80, Microsoft Research, 2004.

[8] T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Information Processing Letters,
33:305-308, 1990.

[9] M. Izal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Al Hamra, and L. Garcés-Erice. Dissect-
ing BitTorrent: Five Months in a Torrent’s Liftime. PAM, Apr. 2004.

[10] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice-Hall, Englewood Cliffs, NJ, 1994.

[11] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips. A Measurement Study of the Bit-
Torrent Peer-to-Peer File-Sharing System. Technical Report PDS-2004-003. Delft University of
Technology, The Netherlands, Apr. 2004.

[12] D. Qiu and R. Srikant, Modeling and Performance Analysis of BitTorrent-like Peer-to-Peer
Networks. SIGCOMM, Sep. 2004.

[13] X. Yang and G. de Veciana, Service Capacity of Peer to Peer Networks. In Proceedings of
IEEE INFOCOM, 2004.

13


