
The New Block Cipher RainbowChang-Hyi Lee1 and Jeong-Soo Kim21 Samsung Advanced Institute of Technology,chang@saitgw.sait.samsung.co.kr2 integer@saitgw.sait.samsung.co.krAbstract. In this paper we propose a new block cipher called Rainbow.It has the substitution and permutation network structure which is sim-ilar to the block ciphers Square[3] and SHARK[9]. The motivation forour algorithm development came out from the hope that, �rst, the blockcipher has the structure of parallelism, second, it has a self-reciprocalstructure, i.e. the whole processing architecture(body) for encryptionand decryption is the same one except feeding its round keys like asthe case of Feistel network structure, and third, its round encryptioninvolves nonlinear(over GF (2m)) and e�cient key dependent(active) dif-fusion layer. Our C-code implementation of Rainbow is available thatruns at about 9-10 MBytes/sec on a 133 MHz Pentium PC. We alsopresented the resistance against various(typical) cryptanalyses.1 IntroductionThe block cipher Rainbow has the SPN structure and it processes on 128-bitdata block with 128-bit seed key. But it has some extendible variants of key andencryption block sizes. Most of the block ciphers with SPN structure has twotypes of layers, so-called di�usion layer and substitution layer in each round.The former has two sub-layers, round key active part(in the most cases this isdescribed simply by round-key XOR with input data) and bit-by-bit permutationpart. The latter has some substitution boxes instead of key action. Our main goalfor the construction of Rainbow was focused on the very second part of di�usionlayer and the self-reciprocal substitution layer. Concretely speaking we madethe former be key active permutation and made the latter, substitution layer,be self-invertible and with
avored simple permutation, not using the algebraicinversion function. And all these processes were designed to have parallelismstructure. Through those, Rainbow would be expected to be highly resistantagainst the present various cryptanalyses and to be e�ciently implementable.2 description of RainbowOne round encryption of Rainbow consists of three layers(see Fig.1), �rst twolayers relate to the round key active di�usion and the other one relates to thenonlinear substitution with simple permutation. And the r times iteration ofsuch layers contributes to the Rainbow's encryption/decryption processes. The

layers are named asGreen(G-function), Blue(B-function), and Red(R-function),respectively.

Red Layer(substitution; R-function)Blue Layer(di�usion2; B-function)Green Layer(di�usion1; G-function)????
?? Round Key(1)Round Key(2)

Fig. 1. One Round Encryption for RainbowThe detailed description for the above components of round encryption ispresented in the following subsections.2.1 G-functionLet X = [X3; X2; X1; X0] be a 128-bit round input data block, where Xi's are32-bit subblocks and let K = [K3;K2;K1;K0] be a 128-bit round key. Then theGK-function de�ned by K is simply described by the linear mapping that:GK(X) = X �K = [X3 �K3; X2 �K2; X1 �K1; X0 �K0];where � denotes the bit by bit XOR operation. Of course this function is a selfinvertible function for a given K, i.e. GK � GK(X) = X .2.2 B-functionLet X and K be the same in the above. Then also this function has a simpledescription like as: BK(X) = [�X3; �X2; �X1; �X0];�X0 = 3Mi=0(Xi ^Ki)�X1 = 3Mi=0(Xi ^Ki+1)2

�X2 = 3Mi=0(Xi ^Ki+2)�X3 = 3Mi=0(Xi ^Ki+3)where ^ denotes bit by bit logic AND operation and the subscripts are modulo-4numbers. The present BK-function generated by K is not invertible in general.But we can give a speci�c condition for K to make the function BK(�) into aself invertible function as one sees in the following theorem.Theorem 1. For a given K = [K3;K2;K1;K0] such that3Mi=0 Ki = (1; 1; : : : ; 1) := 132;the function BK de�ned by K as described in the above is a self invertible func-tion.Proof. We have to show that BK � BK(X) = X (1)Expanding the equation 2.1 and considering that Ki ^ Ki = Ki ^ �1 = Ki, weknow that it is su�cient to show that for each i 6= j 2 f0; 1; 2; 3g,3Mk=0(Ki+k ^Kj+k) = (0; 0; : : : ; 0) := 032; (2)where also the plus operator in the subscripts are modulo-4 addition. But herewe show that only for the case of j = i+1, the other cases also can be shown inthe similar way.(Ki ^Ki+1)� (Ki+1 ^Ki+2)� (Ki+2 ^Ki+3)� (Ki+3 ^Ki)= fKi ^ (Ki+1 �Ki+3)g � fKi+2 ^ (Ki+1 �Ki+3)g= (Ki+1 �Ki+3) ^ (Ki �Ki+2)= (Ki+1 �Ki+3) ^ (Ki+1 �Ki+3 � 132)= �0 utThis function B plays its role for the key dependent data block di�usion justbefore the action of nonlinear self invertible function, R described in the nextsubsection. 3

2.3 R-functionIn the construction of R, we also give the self invertible structure for the nonlin-ear function R. Now let f be a bijective nonlinear function of GF (28) to GF (28).It is preferable to choose f so that it and its inverse f�1 have low di�erentialuniformity and low linearity and so that have low complexity for their hardwareimplementation. In the below subsection we illustrate our choice for f . The func-tion R consists of three types of component functions, P1, P2, P3, which all arede�ned in the following as functions of the sub-data block, GF (232) to GF (232).Let x = (x3; x2; x1; x0), xi 2 GF (28) and so x 2 GF (232). Let's de�neP1(x) = 0BB@ 0 f 0 0f�1 0 0 00 0 0 f0 0 f�1 01CCA0BB@x3x2x1x01CCA= (f(x2); f�1(x3); f(x0); f�1(x1))T (3)P2(x) = 0BB@ 0 0 f 00 0 0 ff�1 0 0 00 f�1 0 01CCA0BB@x3x2x1x01CCA= (f(x1); f(x0); f�1(x3); f�1(x2))T (4)P3(x) = 0BB@ 0 0 0 f0 0 f 00 f�1 0 0f�1 0 0 01CCA0BB@x3x2x1x01CCA= (f(x0); f(x1); f�1(x2); f�1(x3))T (5)Finally we de�ne the function R of GF (2128) to GF (2128) as:R = [P2;P3;P2;P1]R[X] = R[X3; X2; X1; X0] = [P2(X3);P3(X2);P2(X1);P1(X0)]Theorem 2. The above nonlinear function R is self invertible.Proof. It is su�cient to show that each Pi is self invertible. We only to showthat for the case of P1 and the other cases can be shown in the similar manner.P1 � P1(x3; x2; x1; x0)= P1(f(x2); f�1(x3); f(x0); f�1(x1))= (f(f�1(x3)); f�1(f(x2)); f(f�1(x1)); f�1(f(x0)))= (x3; x2; x1; x0) ut4

As said in the beginning of this section, for example, 7-round encryption anddecryption of Rainbow is described as:RainbowEncK(X) = B � G � F � F � F � F � F � F � F (X); (6)! F = R � B � G;where the functions G's and B's are de�ned by its round keys derived from Kby the key scheduling mentioned in the next section. Further in which the wholeself-reciprocal(self-invertible) property ofRainbow except the round key feedingcan be achieved. Those functions B and R play very critical roles for Rainbow.2.4 Our Choice of fWe need to establish the bijective nonlinear function f to satisfy that if possi-ble, it has low di�erential uniformity and low linearity, further to facilitate itshardware implementation. But this is a very hard problem. We took a easy ap-proach and groped for comparatively e�ective f in the set of algebraic functionsof GF (28) to GF (28). Concretely describing, letf(x) = x37; x 2 GF (28) (7)f�1(x) = x193; x 2 GF (28): (8)Then Di�erential Probability DC(f) = 2�5:4squared Linear Probability LC2(f) = 2�4;further the nonlinear order of both f and f�1 is 3, since x37 = x25+22+1 andx193 = x27+26+1. The concrete implementation aspects of these functions is dealtin the section 5.2.5 Key SchedulingThere are needed 2(R + 1) round key blocks of which size is 16 bytes(128-bits)long for the Rainbow's encryption or decryption process, that is, in each layer ofequation 2.6, di�erent types of key blocks are fed into those di�usion functions,G and B. Here is presented the key scheduling algorithm for Rainbow in pseudo-code. As one sees in the following algorithm, there are used only the two simpleoperations, bit-by-bit XOR and 4 types of rotations. Let S = [S3; S2; S1; S0] bea 128-bit seed key and Si's are its 32-bit subblock. In the following pseudo-code,the content 0xb7e15163 was chosen from the constant, so called golden ratio� = 1:618033988749 : : :, by the �rst 32 bits following the decimal point.INPUT : seed key block; S = [S3; S2; S1; S0]; jSij = 32� bitOUTPUT(1) : encryption round key blocks; Ke[2R+ 1][4]5

OUTPUT(2) : decryption round key blocks; Kd[2R+ 1][4]Ke[0] S /*that is, Ke[0][j] S[j] = Sj ; j = 0; 1; 2; 3 */i = 1;While i < 2R+ 2 do the following (R : number of rounds)f /*We encourage one to use R � 7*/Ke[i] Ke[i� 1];Ke[i][0] (Ke[i][0] >>> 3)� (Ke[i][1] >>> 5)� (Ke[i][2] >>> 7)�(Ke[i][3] >>> 11)� 0xb7e15163;Ke[i][1] (Ke[i][0] >>> 5)� (Ke[i][1] >>> 7)� (Ke[i][2] >>> 11)�(Ke[i][3] >>> 3)� 0xb7e15163;Ke[i][2] (Ke[i][0] >>> 7)� (Ke[i][1] >>> 11)� (Ke[i][2] >>> 3)�(Ke[i][3] >>> 5)� 0xb7e15163;Ke[i][3] (Ke[i][0] >>> 11)� (Ke[i][1] >>> 3)� (Ke[i][2] >>> 5)�Ke[i][3] >>> 7)� 0xb7e15163;i = i+ 1;gj = 0;While j < R+ 1 do the followingf i = 2 � j + 1;Ke[i][0] Ke[i][1]�Ke[i][2]�Ke[i][3]� 0x����;Kd[2 � (R+ 1)� i] Ke[i];j = j + 1;gj = 0;While j < R+ 1 do the followingf i = 2 � j; i1 = 2 � (R � j); i2 = i1 + 1;Kd[i][0] (Ke[i1][0] ^Ke[i2][0])� (Ke[i1][1] ^Ke[i2][1])�(Ke[i1][2] ^Ke[i2][2])� (Ke[i1][3] ^Ke[i2][3]);Kd[i][1] (Ke[i1][0] ^Ke[i2][1])� (Ke[i1][1] ^Ke[i2][2])�(Ke[i1][2] ^Ke[i2][3])� (Ke[i1][3] ^Ke[i2][0]);Kd[i][2] (Ke[i1][0] ^Ke[i2][2])� (Ke[i1][1] ^Ke[i2][3])�(Ke[i1][2] ^Ke[i2][0])� (Ke[i1][3] ^Ke[i2][1]);Kd[i][3] (Ke[i1][0] ^Ke[i2][3])� (Ke[i1][1] ^Ke[i2][0])�(Ke[i1][2] ^Ke[i2][1])� (Ke[i1][3] ^Ke[i2][2]);j = j + 1;gAs one sees, this key scheduling algorithm is very simple and was designedfor each bit values of the seed key to a�ect all the round key blocks and theirsub blocks. And we can decrypt cipher texts CT using the same processing
ow(equation 2.6) as in the the encrypting process with the decryption keys6

Kd[i]'s evoluted in the above algorithm, i.e.RainbowDecKd(CT) = B � G � F � F � F � F � F � F � F (CT); (9)! F = R � B � G:Its validity was shown in the following theorem.Theorem 3. LetK = [K3;K2;K1;K0]S = [S3; S2; S1; S0]; L3i=0 Si = (1; 1; : : : ; 1)�K = [�K3; �K2; �K1; �K0]�Ki = (K0 ^ Si)� (K1 ^ Si+1)� (K2 ^ Si+2)� (K3 ^ Si+3)i = 0; 1; 2; 3; subscrypts are modulo-4 numbersThen the following holds: GK � BS = BS � G �KProof. Let X = [X3; X2; X1; X0], Y = [Y3; Y2; Y1; Y0] and GK �BS(X) = Y . Let'sfocus on the ith subblock Yi of Y . Noting that L4j=0(�Kj ^ Si+j) = Ki which isdeduced from the proof of theorem2.1 we get the followingYi = (X0 ^ Si)� (X1 ^ Si+1)� (X2 ^ Si+2)� (X3 ^ Si+3)�Ki= (X0 ^ Si)� (X1 ^ Si+1)� (X2 ^ Si+2)� (X3 ^ Si+3)� 4Mj=0(�Kj ^ Si+j)= ((X0 � �K0) ^ Si)� ((X1 � �K1) ^ Si+1)�((X2 � �K2) ^ Si+2)� ((X3 � �K3) ^ Si+3)= ith component of BS � G �K(X)This completes the proof. utIn this section we showed that Rainbow has the structure that just itsencryption process can be used as its decryption process(that is, following thesame order of the functions G, B and R with such above evoluted round keys.This e�ciency reduces the size of software implemented code and the hardwareimplemented chip area.3 Security of Rainbow3.1 DC and LC attacksThe practical analyses of di�erential cryptanalysis[4] and linear cryptanalysis[8]are heavily dependent on whether we can �nd some e�cient di�erential charac-teristic or linear characteristic to make their attack feasible. But in our case of7

Rainbow the blue function layer of function B makes the e�ort to trace suche�cient characteristic be meaningless, since its key dependent masking(it is as-sumed that all round keys are randomly chosen) makes it impossible for one tocontrol the input di�erences to each S-box for DC or the input masking vectorsto each S-box for LC. Even if, however, in some rough sense of average con-cept(for the randomly chosen round keys) there are 29 active S-boxes in every 3rounds, the 7-round encryption has at least 58 active S-boxes, and so the di�er-ential characteristic and squared linear characteristic are (2�5:4)58 = 2�313:2 and(2�4)58 = 2�232 respectively. These are negligible amounts and these attacks arenot available for Rainbow.3.2 Higher Order Di�erential AttackIt was shown in [2] that if an iterated cipher has the polynomial degree d of theciphertext bits of the round next to the last as a function of the plaintext bits,the higher order di�erential attack[1] requires 2d+1 chosen plaintexts which willsuccessfully recover the b bits of the last round key with average time complexity2b+d. But, as mentioned in section 2.4, the nonlinear order of one round is atleast 3, and so the nonlinear order of the output bits of Rainbow just after �verounds is 35. This amount exceeds the attack available maximum value 127 andthe cipher would be expected to be secure again higher order di�erential attack.3.3 Interpolation AttackThe interpolation attack[2] is considerable only when the whole encryption pro-cess can be described in some proper algebraic functions of data blocks and keyblocks in a proper GF (2m). But, also for this case, the key dependent functionB blocks such conversions into algebraic form over GF (2m) except over GF (2).Even for the case of GF (2) it's not available, since #jGF (2)j = 2 is exorbitantlysmall for the number of plain/ciphertext pairs to be required in this attack.Hence Rainbow would be expected to escape this attack.4 Variants of Key and Encryption Block Sizes4.1 Variants of Key SizeLet the seed key S = [Sn�1; : : : ; S1; S0] consists of n word blocks, where 1 wordblock denotes the 32-bit block, i.e. the bit-size of S be 32n, 4 � n � 8. Then,in the key scheduling algorithm(pseudo-code) of section2.5, we use the �rst 4words(128-bits) of S as the initial 128-bit seed key value as in the code and justbefore the �rst While-loop of the code we insert the following new code lines;Ke[1] Ke[0];for (j = 0; j < n� 4; j ++) Ke[1][j] Ke[1][j]� S4+j ;Ke[1][0] (Ke[1][0] >>> 3)� (Ke[1][1] >>> 5)� (Ke[i][2] >>> 7)8

�(Ke[1][3] >>> 11)� 0xb7e15163;Ke[1][1] (Ke[1][0] >>> 5)� (Ke[1][1] >>> 7)�(Ke[1][2] >>> 11)� (Ke[i][3] >>> 3)� 0xb7e15163;Ke[1][2] (Ke[1][0] >>> 7)� (Ke[1][1] >>> 11)�(Ke[1][2] >>> 3)� (Ke[1][3] >>> 5)� 0xb7e15163;Ke[1][3] (Ke[1][0] >>> 11)� (Ke[1][1] >>> 3)�(Ke[1][2] >>> 5)�Ke[1][3] >>> 7)� 0xb7e15163;i = 2;Through this additional code the key scheduling algorithm gets to be avail-able for several variants of seed key size with word by word increment between128-bits and 256-bits.4.2 Variants of Encryption Block SizeWe think it is su�cient that one modi�es the Blue-function BK and the Red-function RK to be available for the variants of sizes of input data X and roundkey K. This can be simply settled by the following considerations;Let jKj = jX j = N bits, K = [K3;K2;K1;K0], jKij = N4 bits, and X =[X3; X2; X1; X0], jXij = N4 bits. And we assume that, by a similar key schedulingalgorithm with the present one, K was scheduled asL3i=0Ki = 1N=4. Then theresulting value of BK(X) := �X = [�X3; �X2; �X1; �X0] is de�ned as the following bythe same manner in the case of 128-bits:BK(X) = [�X3; �X2; �X1; �X0];�X0 = 3Mi=0(Xi ^Ki)�X1 = 3Mi=0(Xi ^Ki+1)�X2 = 3Mi=0(Xi ^Ki+2)�X3 = 3Mi=0(Xi ^Ki+3);and, if we let �X = [Yn�1; : : : ; Y1; Y0] and jYij = 32 bits, the resulting value ofR(�X) := Y is de�ned by repeating the functions Pi's of GF (232) to GF (232)constructed in section2.3 in the order of P2;P3;P2;P1 from the right most word,as the following:Y = [: : : ;P2(Y5);P1(Y4);P2(Y3);P3(Y2);P2(Y1);P1(Y0)]Through this extensibility Rainbow gets to be available for several variants ofblock size with word by word increment.9

5 Performance and Implementation FacilitiesOur reference C-code implementation of Rainbow runs at 9-10 MBytes/sec ona 400MHz Pentium PC with Window95 operating system with 32MByte RAM.But using e�ectively its parallelism it would be expected to be more optimized.The �rst table in the following present the ECB-mode encryption speed forthree types of key-block combinations. And those �gures in milli-seconds wereobtained with a raw resolution around 5ms and from these �gures we can com-puted the Rainbow's encryption/decryption times in clock cycles as in thefollowing second table(note 1ms=133000 clocks).Key/Block Init.Cipher Encrypt Decrypt Key Init.(1 Mbytes) (1 Mbytes) (1024times)128/128 32 ms 390 ms 380 ms 50.0 ms192/128 32 ms 390 ms 380 ms 51.2 ms256/128 32 ms 380 ms 390 ms 51.2 msKey/Block Init.Cipher Encrypt Decrypt Init.1Key Key(1 Block) (1 Block) Change128/128 4256000 clks 791 clks 771 clks 6494 clks 0192/128 4256000 clks 791 clks 771 clks 6650 clks 0256/128 4256000 clks 771 clks 791 clks 6650 clks 0As mentioned in the section2.4, we chose the S-box functions f and f�1 asx37 and x193 respectively and we make the Rainbow's S-box, RED, by usingthe normal basis generated by the root ofp(x) = x8 + x7 + x5 + x3 + 1:The concrete entries of the table, RED, were represented in appendix-A at theend of this manuscript. Here are presented two considerations on the hardwaredesign of Rainbow, one is based on the table(S-box) look-up method and an-other is based on the wholly circuit designed(for the functions f and f�1) one, inwhich the explanation on the facilities of our choice for f and f�1 is presented.5.1 Table Look-up CaseIn this case, the S-box is stored in the memory devices, such as ROM, RAM,etc.. And so, the circuit design costs required for the implementations of thethree functions, G, B, R are the followings;� in G-layer : 128 XOR gates and one gate delay;� in B-layer : 128� 4 AND gates, (32� 3)� 4 XOR gatesand 3 gate delays; 10

� in R-layer : 16 table look-up's;So, in total, the implementation of the 7-round Rainbow, in this case, re-quires 8 � (128 + 384) = 4096 = 4K XOR gates, 8 � 512 = 4096 = 4K ANDgates, 16 � 7 = 112 table look-up's, and 4 � 8 = 32 gate delays and 7 tablelook-up delays.5.2 Circuit Design for S-boxAs previously described, f = x37 = x25+22+1 and f�1 = x193 = x27+26+1. If weuse the normal basis of GF (28) over GF (2) to design the functions, their imple-mentation costs are same and they can be designed by the two sequential �eldmultiplications, since the terms, x2i 's can be achieved by only the right(or left)bit-by-bit rotations of x over the normal based representation. As well known,there is no optimal normal basis of GF (28) over GF (2) to facilitate the h/wdesign of �eld multiplication and so we investigated all the N-polynomials([7][6],this means the irreducible polynomials of which root generate a normal basis) ofdegree, 8, over GF (2) to �nd such N-polynomial as to generate the second bestnormal basis of which complexity minimum.There are just 16 N-polynomials of degree 8 over GF (2) and we found thatthere exists only one N-polynomial of which multiplication table(matrix)'s com-plexity reaches the the minimum value, 21. The N-polynomial p(x) isp(x) = x8 + x7 + x5 + x3 + 1: (10)If we set p(x) as the de�ning polynomial for GF (28) over GF (2), then its gen-erating normal basis has the �rst �eld multiplication table(matrix), T0(see [7]),is represented as 0BBBBBBBBBB@
0 0 0 1 0 0 0 00 0 0 0 0 0 1 10 0 0 0 1 0 1 01 0 0 0 0 1 1 10 0 1 0 0 1 0 00 0 0 1 1 0 0 00 1 1 1 0 0 0 10 1 0 1 0 0 1 1

1CCCCCCCCCCA :This table tells us the design cost of one �eld multiplication. From this weknow that it, in total, requires 8 � 29 = 232 AND gates, 8 � 20 = 160 XORgates, and 7 gate delay, in the case of bit-parallel design. Therefore the designof f requires two times of those complexities and so the whole R-layer's needs16� 464 = 7424 � 7K AND gates, 16� 320 = 5120 � 5K XOR gates, and 14gate delays.Collectively, the whole circuit design for the 7-round Rainbow requires 53KAND gates, 39K XOR gates, and 130 gate delays. We think this is very e�ectiveand the performance induced from this seems to make Rainbow be applicable tosuch areas of ATM, HDTV, B-ISDN, and Satellite. Further more the Rainbow11

was designed only by using bit-by-bit XOR and logic AND operations and using8� 8 S-boxes which have simple and e�ective implementation characteristics inits VLSI circuit design structure. So it would be e�ectively applicable to 8-bitprocessors, too.6 ConclusionIn this paper, we described the structure of the newly proposed block cipher,Rainbow and considered its e�ective characteristics and its design rational. Assaid previously, Rainbow was designed to satisfy our goal, i.e. the key activedi�usion so that its layer, B-layer, cut o� such hazards from the typical andconventional attacks, di�erential cryptanalysis, linear cryptanalysis, higher orderdi�erential attack, and interpolation attack. Its low-cost VLSI design structuremake it possible to be applicable to those application areas, ATM, HDTV, B-ISDN, Satellite and such as Smart Cards using 8-bit processor. The referencingC-code implementation of Rainbow which is compiled by visual C++ runs at9-10 MBytes/s on Pentium 400MHz with window95 operating system.References1. X.J. Lai, Higher order derivatives and di�erential cryptanalysis, In R. Blahut,editor, Communication and Cryptography, Two Sides of one tapestry. Kluwer Aca-demic Publishers, 1994. ISBN 0-7923-9469-0.2. T. Jakobsen and L.R. Knudsen. The Interpolation Attack on Block Ciphers. Ad-vances in Cryptology - Fast Software Encryption'97, Lecture Notes in ComputerScience , Springer-Verlag pp.28-40, 1996.3. J. Daemen, L. Knudsen and V. Rijmen, The Block Cipher Square Advances inCryptology - Fast Software Encryption'97, Lecture Notes in Computer Science ,Springer-Verlag pp.149-171, 1997.4. E. Biham and A. Shamir. Di�erential Cryptanalysis of the Data Encryption Stan-dard. Springer-Verlag, 1993.5. K. Nyberg. S-Boxes and Round Functions with Controllable Linearity and Di�er-ential Uniformity. Advances in Cryptology - Fast Software Encryption'94, LectureNotes in Computer Science 1008, Springer-Verlag pp.111-130, 1994.6. R. Lidl, H. Niederreiter, Finite Fields. Encyclopedia of Math. and its Application,#20.7. Alfred J. Menezes, Applications of Finite Fields, Kluwer Academic Publishers,pp.83, 1993.8. M. Matsui. Linear Cryptanalysis Method for DES cipher, Advances in Cryptol-ogy - EUROCRYPT'93, Lecture Notes in Computer Science 765, Springer-Verlag,pp.386-397, 19949. V. Rijmen, J. Daemen et al., The Cipher SHARK, Fast Software Encryption, LNCS1039, Springer-Verlag, pp.99-112, 1996.
12

A AppendixA.1 The S-box RED of RainbowHere are listed the tables of f and f�1 and the whole table of RED[512] is givenby pasting these two tables in this order.� Table of f .0x00 0x0e 0x1c 0x08 0x38 0xe5 0x10 0x190x70 0x16 0xcb 0x42 0x20 0xe7 0x32 0xd40xe0 0xcc 0x2c 0x65 0x97 0xa7 0x84 0x1f0x40 0x67 0xcf 0x78 0x64 0x2d 0xa9 0xbe0xc1 0xc2 0x99 0xec 0x58 0xd1 0xca 0xfb0x2f 0x8e 0x4f 0x6d 0x09 0x50 0x3e 0x2a0x80 0x56 0xce 0x11 0x9f 0x0c 0xf0 0xa40xc8 0xdf 0x5a 0xb1 0x53 0x73 0x7d 0x6f0x83 0x79 0x85 0xf9 0x33 0xe9 0xd9 0x4b0xb0 0x74 0xa3 0x14 0x95 0x03 0xf7 0xdc0x5e 0x7a 0x1d 0xc0 0x9e 0x55 0xda 0x260x12 0x6b 0xa0 0xd5 0x7c 0x98 0x54 0x720x01 0x48 0xac 0x0f 0x9d 0xad 0x22 0x360x3f 0x82 0x18 0xba 0xe1 0x57 0x49 0x2e0x91 0xf1 0xbf 0x4a 0xb4 0x62 0x63 0xee0xa6 0x51 0xe6 0x71 0xfa 0xc9 0xde 0x430x07 0x04 0xf2 0x8c 0x0b 0x21 0xf3 0x6a0x66 0xb2 0xd3 0x8f 0xb3 0x3c 0x96 0x5f0x61 0x76 0xe8 0xfd 0x47 0xb6 0x28 0x150x2b 0x88 0x06 0x52 0xef 0xd8 0xb9 0xb70xbc 0xfc 0xf4 0xa5 0x3a 0x0a 0x81 0x6e0x3d 0x60 0xaa 0x13 0xb5 0xea 0x4c 0x390x24 0x87 0xd6 0x1b 0x41 0x5d 0xab 0x170xf8 0x25 0x31 0x77 0xa8 0xb8 0xe4 0xa10x02 0x46 0x90 0x35 0x59 0xc7 0x1e 0xaf0x3b 0xfe 0x5b 0x8a 0x44 0x29 0x6c 0xdb0x7e 0xd2 0x05 0x37 0x30 0x89 0x75 0x9c0xc3 0x8d 0xae 0x8b 0x92 0xbb 0x5c 0xd00x23 0x9a 0xe3 0xd7 0x7f 0x45 0x94 0xed0x69 0x9b 0xc4 0x4e 0xc6 0xc5 0xdd 0x680x4d 0xeb 0xa2 0xf6 0xcd 0x27 0xe2 0x340xf5 0x7b 0x93 0x1a 0xbd 0x0d 0x86 0xff
13

� Table of f�1.0x00 0x60 0xc0 0x4d 0x81 0xd2 0x9a 0x800x03 0x2c 0xa5 0x84 0x35 0xfd 0x01 0x630x06 0x33 0x58 0xab 0x4b 0x97 0x09 0xb70x6a 0x07 0xfb 0xb3 0x02 0x52 0xc6 0x170x0c 0x85 0x66 0xe0 0xb0 0xb9 0x57 0xf50x96 0xcd 0x2f 0x98 0x12 0x1d 0x6f 0x280xd4 0xba 0x0e 0x44 0xf7 0xc3 0x67 0xd30x04 0xaf 0xa4 0xc8 0x8d 0xa8 0x2e 0x680x18 0xb4 0x0b 0x7f 0xcc 0xe5 0xc1 0x940x61 0x6e 0x73 0x47 0xae 0xf0 0xeb 0x2a0x2d 0x79 0x9b 0x3c 0x5e 0x55 0x31 0x6d0x24 0xc4 0x3a 0xca 0xde 0xb5 0x50 0x8f0xa9 0x90 0x75 0x76 0x1c 0x13 0x88 0x190xef 0xe8 0x87 0x59 0xce 0x2b 0xa7 0x3f0x08 0x7b 0x5f 0x3d 0x49 0xd6 0x91 0xbb0x1b 0x41 0x51 0xf9 0x5c 0x3e 0xd0 0xe40x30 0xa6 0x69 0x40 0x16 0x42 0xfe 0xb10x99 0xd5 0xcb 0xdb 0x83 0xd9 0x29 0x8b0xc2 0x70 0xdc 0xfa 0xe6 0x4c 0x8e 0x140x5d 0x22 0xe1 0xe9 0xd7 0x64 0x54 0x340x5a 0xbf 0xf2 0x4a 0x37 0xa3 0x78 0x150xbc 0x1e 0xaa 0xb6 0x62 0x65 0xda 0xc70x48 0x3b 0x89 0x8c 0x74 0xac 0x95 0x9f0xbd 0x9e 0x6b 0xdd 0xa0 0xfc 0x1f 0x720x53 0x20 0x21 0xd8 0xea 0xed 0xec 0xc50x38 0x7d 0x26 0x0a 0x11 0xf4 0x32 0x1a0xdf 0x25 0xd1 0x8a 0x0f 0x5b 0xb2 0xe30x9d 0x46 0x56 0xcf 0x4f 0xee 0x7e 0x390x10 0x6c 0xf6 0xe2 0xbe 0x05 0x7a 0x0d0x92 0x45 0xad 0xf1 0x23 0xe7 0x77 0x9c0x36 0x71 0x82 0x86 0xa2 0xf8 0xf3 0x4e0xb8 0x43 0x7c 0x27 0xa1 0x93 0xc9 0xff

14

