The New Block Cipher RAINBOW

Chang-Hyi Lee! and Jeong-Soo Kim?

! Samsung Advanced Institute of Technology,
chang@saitgw.sait.samsung.co.kr
2 integer@saitgw.sait.samsung.co.kr

Abstract. In this paper we propose a new block cipher called RAINBOW.
It has the substitution and permutation network structure which is sim-
ilar to the block ciphers Square[3] and SHARK]J9]. The motivation for
our algorithm development came out from the hope that, first, the block
cipher has the structure of parallelism, second, it has a self-reciprocal
structure, i.e. the whole processing architecture(body) for encryption
and decryption is the same one except feeding its round keys like as
the case of Feistel network structure, and third, its round encryption
involves nonlinear(over GF(2™)) and efficient key dependent(active) dif-
fusion layer. Our C-code implementation of RAINBOW is available that
runs at about 9-10 MBytes/sec on a 133 MHz Pentium PC. We also
presented the resistance against various(typical) cryptanalyses.

1 Introduction

The block cipher RAINBOW has the SPN structure and it processes on 128-bit
data block with 128-bit seed key. But it has some extendible variants of key and
encryption block sizes. Most of the block ciphers with SPN structure has two
types of layers, so-called diffusion layer and substitution layer in each round.
The former has two sub-layers, round key active part(in the most cases this is
described simply by round-key XOR with input data) and bit-by-bit permutation
part. The latter has some substitution boxes instead of key action. Our main goal
for the construction of RAINBOW was focused on the very second part of diffusion
layer and the self-reciprocal substitution layer. Concretely speaking we made
the former be key active permutation and made the latter, substitution layer,
be self-invertible and with flavored simple permutation, not using the algebraic
inversion function. And all these processes were designed to have parallelism
structure. Through those, RAINBOW would be expected to be highly resistant
against the present various cryptanalyses and to be efficiently implementable.

2 description of RAINBOW

One round encryption of RAINBOW consists of three layers(see Fig.1), first two
layers relate to the round key active diffusion and the other one relates to the
nonlinear substitution with simple permutation. And the r times iteration of
such layers contributes to the RAINBOW’s encryption/decryption processes. The

layers are named as Green(G-function), Blue(B-function), and Red(R-function),
respectively.

l — Round Key(1)

Green Layer(diffusionl; G-function)

l — Round Key(2)

Blue Layer(diffusion2; B-function)

l

Red Layer(substitution; R-function)

l

Fig. 1. One Round Encryption for RAINBOW

The detailed description for the above components of round encryption is
presented in the following subsections.

2.1 G-function

Let X = [X3, X3, X1, Xo] be a 128-bit round input data block, where X;’s are
32-bit subblocks and let K = [K3, K3, K1, Ko] be a 128-bit round key. Then the
G -function defined by K is simply described by the linear mapping that:

Or(X)=X®K =[X;® K3, X, ® Ky, X1 ® K1, X0 ® Ko,

where @ denotes the bit by bit XOR operation. Of course this function is a self
invertible function for a given K, i.e. Gg o Gx(X) = X.

2.2 B-function

Let X and K be the same in the above. Then also this function has a simple
description like as:

BK(X) = [X37X2;X17X0]7
3
XO = @(Xz N Kz)
=0
_ 3
X1 =P AKip)
=0

3
= ; .
Xo @(X AN Kiyo)

i=0
3

X = P (X A Kigs)
=0

where A denotes bit by bit logic AND operation and the subscripts are modulo-4
numbers. The present Bx-function generated by K is not invertible in general.
But we can give a specific condition for K to make the function Bk (*) into a
self invertible function as one sees in the following theorem.

Theorem 1. For a given K = [K3, Ko, K, K] such that

the function By defined by K as described in the above is a self invertible func-
tion.

Proof. We have to show that
Bk o Bg(X)=X (1)

Expanding the equation 2.1 and considering that K; A K; = K; A1 = K;, we
know that it is sufficient to show that for each i # j € {0,1,2,3},

3
P (Kirk A Kjii) = (0,0,....,0) := 0%, (2)
k=0
where also the plus operator in the subscripts are modulo-4 addition. But here

we show that only for the case of j = ¢+ 1, the other cases also can be shown in
the similar way.

(Ki ANKiy1) ® (Kip1 A Kig2) ® (Kipa A Kiv3) © (Kips A K;)
={KiN(Kit1 © Kit3)} @ {Kiy2 A (Kip1 © Kiy3)}
= (Kip1 @ Kiys) A (Ki ® Kiyo)
= (Kiz1 @ Kiy3) A(Kip1 © Kiys ©1%2)
=0
O

This function B plays its role for the key dependent data block diffusion just
before the action of nonlinear self invertible function, R described in the next
subsection.

2.3 "R-function

In the construction of R, we also give the self invertible structure for the nonlin-
ear function R. Now let f be a bijective nonlinear function of GF(2%) to GF(28).
It is preferable to choose f so that it and its inverse f~! have low differential
uniformity and low linearity and so that have low complexity for their hardware
implementation. In the below subsection we illustrate our choice for f. The func-
tion R consists of three types of component functions, P, P2, Ps3, which all are
defined in the following as functions of the sub-data block, GF(2%?) to GF(2%?).
Let © = (z3,%2,71,%0), z; € GF(2%) and so z € GF(23?). Let’s define

0 Ff 0 0\ /a5
-1
=[50) 2
0 0710/ \ =
= (f(x2), f (x3), f(zo), fH(z1))" (3)
0 0 fO\ [
o oo0s]|a
Pa(x) = 710 00 mi
0 200/ \ =
= (f(z1), f(wo), £ H(ws), fH(w2))" (4)
0 0 0f\ [
prwy = | O 0 10| [

= (f(o), f(z1), [(w2), FH (3))" (5)
Finally we define the function R of GF(2!?%) to GF(2'?%) as:

R = [P277D377327731]
R[X] = R[X3, X2, X1, Xo] = [P2(X3), P3(X2), P2(X1), P1(Xo)]

Theorem 2. The above nonlinear function R is self invertible.

Proof. Tt is sufficient to show that each P; is self invertible. We only to show
that for the case of P; and the other cases can be shown in the similar manner.

731 o Pl($3,$2,$1,$0)
=Pi(f(@2), f (z3), f(®0), fH(z1))
= (f(f~ (@s)), F~ (f(w2)), F(f~ (1)), £~ (f (20)))

= (w3, 22,21, %0)

As said in the beginning of this section, for example, 7-round encryption and
decryption of RAINBOW is described as:

RainbowEncg(X) = BoGoFoFoFoFoFoFoF(X), (6)
- F=RoBog,

where the functions G’s and B’s are defined by its round keys derived from K
by the key scheduling mentioned in the next section. Further in which the whole
self-reciprocal(self-invertible) property of RAINBOW except the round key feeding
can be achieved. Those functions B and R play very critical roles for RAINBOW.

2.4 Owur Choice of f

We need to establish the bijective nonlinear function f to satisfy that if possi-
ble, it has low differential uniformity and low linearity, further to facilitate its
hardware implementation. But this is a very hard problem. We took a easy ap-
proach and groped for comparatively effective f in the set of algebraic functions
of GF(28) to GF(2%). Concretely describing, let

=237, r e GF(2%) (7)
fHz) =2, z e GF(2%). (8)

Then

Differential Probability DC(f) =
squared Linear Probability LO?(f) =

further the nonlinear order of both f and f~1is 3, since 237 = 2" +2°+1 and
z!9% = 22 2°+1 The concrete implementation aspects of these functions is dealt

in the section 5.

2.5 Key Scheduling

There are needed 2(R + 1) round key blocks of which size is 16 bytes(128-bits)
long for the RAINBOW’s encryption or decryption process, that is, in each layer of
equation 2.6, different types of key blocks are fed into those diffusion functions,
G and B. Here is presented the key scheduling algorithm for RAINBOW in pseudo-
code. As one sees in the following algorithm, there are used only the two simple
operations, bit-by-bit XOR and 4 types of rotations. Let S = [S3, S2, 51, So] be
a 128-bit seed key and S;’s are its 32-bit subblock. In the following pseudo-code,
the content 0xb7e15163 was chosen from the constant, so called golden ratio
¢ = 1.618033988749. .., by the first 32 bits following the decimal point.

INPUT : seed key block; S = [S3,S2,51,S0], |Si| =32 — bit
OUTPUT(1) : encryption round key blocks; K.[2R + 1][4]

OUTPUT(2) : decryption round key blocks; K4[2R + 1][4]
K.[0] + S /*that is, K [0][j] «+ S[j]=S;, j =0,1,2,3*/
1=1;
While ¢ < 2R + 2 do the following (+ R : number of rounds)
{ /*We encourage one to use R > 7*/
K.[i] « K.[i — 1];
K [i][0] < (K.[7][0] >>> 3) @ (K [i][1] >>> 5) & (K [i][2] >>>T7)
B (K,[#][3] >>> 11) & 0xbT7el5163;
K [i][1] « (K [i][0] >>> 5) & (K [i][1] >>> 7) & (K.[i][2] >>> 11)
B (K,[3][3] >>> 3) ® 0xb7el5163;
K [i][2] < (K [F][0] >>> 7) @ (K [i][1] >>> 11) & (K, [i][2] >>> 3)
B (K,[3][3] >>> 5) ® 0xb7el5163;
K [i][3] < (K [i][0] >>> 11) & (K. [i][1] >>> 3) & (K.[i][2] >>> 5)
SK[i][3] >>> T) & 0xb7el5163;
1 =1+1;
}
J=0;
While j < R+ 1 do the following
{
i=2%j+1;
K [i][0] « K [i][1] ® K.[i][2] ® K.[i][3] © Ox{ttti;
Kal2+ (R+1) -] « K.[i}

j=i+ 5
}
J=0;
While j < R+ 1 do the following
{

i=2%j; iy =2%(R—j); iy =i1+1;

Kq[i][0] ¢ (Kc[i1][0] A Ke[i][0]) © (Ke[in][1] A Kelio][1])®
(Ke[in][2] A Ke[i2][2]) © (Ke[ia][3] A Ke[ia][3]);

Ka[i][1] = (Kc[ia][0] A Ke[io][1]) @ (Ke[in][1] A Kelio][2])®
(K [ia][2] A K [i2][3]) © (K [ia][3] A K [22][0]);

Kali][2] = (Ke[i1][0] A K [i2][2]) © (Ke[ir][1] A Ke[ia][3])®
(Ke[i1][2] A Ke[i2][0]) © (Ke[ia][3] A Ke[ia][1]);

Ka[i][3] = (Kc[i1][0] A Ke[i][3]) © (Kelin][1] A Kelia][0]))
(Ke[ia][2] A K [i2][1]) © (K [ia][3] A K [i2][2]);

i=i+th

}

As one sees, this key scheduling algorithm is very simple and was designed

for each bit values of the seed key to affect all the round key blocks and their
sub blocks. And we can decrypt cipher texts CT using the same processing
flow(equation 2.6) as in the the encrypting process with the decryption keys

6

K4[i]’s evoluted in the above algorithm, i.e.

RainbowDecg,(CT) = BoGoFoFoFoFoFoFoF(CT), 9)
— F=RoBog.

Its validity was shown in the following theorem.
Theorem 3. Let

K= [K37K2;K1;K0]
S =1[S5,82,51,5], BiSi=(1,1,...,1)
K = [K3, K, K1, Ko]

Ki=(KoNS;)® (K1 ASit1) ® (K2 A Siya) ® (Ks A Sits)
1=0,1,2,3, subscrypts are modulo-4 numbers

Then the following holds:
Gk oBs =Bsolg

Proof. Let X = [X3, X2, X3, X0, Y =[¥3,Y3,Y7,Y0] and G o Bs(X) =Y. Let’s
focus on the it" subblock Y; of Y. Noting that ®§20(Kj A Sitj) = K; which is
deduced from the proof of theorem2.1 we get the following

Y;' = (XO A St) [S) (X1 A Si+1) ©® (X2 A Si+2) D (X3 A Si+3) @ Kl
4

=(XoAS;) @ (X1 ASix1) D (Xa A Sit2) ® (X3 ASips) ® @(KJ A SiJrj)
7j=0
= ((Xo (&) I_(o) AN S@) (&) ((X1 (&) I_(l) A Si—i—l) D
(X2 @ K2) A Siy2) ® (X3 @ K3) A Siys)
= i'" component of Bs o Gz (X)
This completes the proof. O

In this section we showed that RAINBOW has the structure that just its
encryption process can be used as its decryption process(that is, following the
same order of the functions G, B and R with such above evoluted round keys.
This efficiency reduces the size of software implemented code and the hardware
implemented chip area.

3 Security of RAINBOW

3.1 DC and LC attacks

The practical analyses of differential cryptanalysis[4] and linear cryptanalysis|8]
are heavily dependent on whether we can find some efficient differential charac-
teristic or linear characteristic to make their attack feasible. But in our case of

RAINBOW the blue function layer of function B makes the effort to trace such
efficient characteristic be meaningless, since its key dependent masking(it is as-
sumed that all round keys are randomly chosen) makes it impossible for one to
control the input differences to each S-box for DC or the input masking vectors
to each S-box for LC. Even if, however, in some rough sense of average con-
cept(for the randomly chosen round keys) there are 29 active S-boxes in every 3
rounds, the 7-round encryption has at least 58 active S-boxes, and so the differ-
ential characteristic and squared linear characteristic are (2754)%% = 27313-2 and
(271)58 = 27232 regpectively. These are negligible amounts and these attacks are
not available for RAINBOW.

3.2 Higher Order Differential Attack

It was shown in [2] that if an iterated cipher has the polynomial degree d of the
ciphertext bits of the round next to the last as a function of the plaintext bits,
the higher order differential attack[1] requires 2?+! chosen plaintexts which will
successfully recover the b bits of the last round key with average time complexity
20+d_ But, as mentioned in section 2.4, the nonlinear order of one round is at
least 3, and so the nonlinear order of the output bits of RAINBOW just after five
rounds is 3°. This amount exceeds the attack available maximum value 127 and
the cipher would be expected to be secure again higher order differential attack.

3.3 Interpolation Attack

The interpolation attack[2] is considerable only when the whole encryption pro-
cess can be described in some proper algebraic functions of data blocks and key
blocks in a proper GF(2™). But, also for this case, the key dependent function
B blocks such conversions into algebraic form over GF(2™) except over GF(2).
Even for the case of GF(2) it’s not available, since #|GF(2)| = 2 is exorbitantly
small for the number of plain/ciphertext pairs to be required in this attack.
Hence RAINBOW would be expected to escape this attack.

4 Variants of Key and Encryption Block Sizes

4.1 Variants of Key Size

Let the seed key S = [Sp—1,- .-, 51, So] consists of n word blocks, where 1 word
block denotes the 32-bit block, i.e. the bit-size of S be 32n, 4 < n < 8. Then,
in the key scheduling algorithm(pseudo-code) of section2.5, we use the first 4
words(128-bits) of S as the initial 128-bit seed key value as in the code and just
before the first While-loop of the code we insert the following new code lines;

K.[1] + K.[0];
for (j =0;j <n—4;j++) K [1][j] Ke[1][j] & Sa;;
K [1][0] « (K [1][0] >>> 3) @ (K [1][1] >>>5) @ (K,[i][2] >>>7)

D(K,[1][3] >>> 11) @ 0xb7el5163;
K [1][1] = (K.[1][0] >>>5) & (K,[1][1] >>>7)

B(K[1][2] >>> 11) & (K,[i][3] >>> 3) & 0xbTel5163;
K [1[2] = (K[1][0] >>>7) ® (K.[1][1] >>> 11)

B(K[1][2] >>> 3) @ (K [1][3] >>> 5) @ 0xbT7el5163;
Ke[1][3] « (K[1][0] >>>11) & (K, [1][1] >>> 3)

B(K[1][2] >>> 5) ® K [1][3] >>> 7) & 0xbT7el5163;
1= 2;

Through this additional code the key scheduling algorithm gets to be avail-
able for several variants of seed key size with word by word increment between
128-bits and 256-bits.

4.2 Variants of Encryption Block Size

We think it is sufficient that one modifies the Blue-function Bx and the Red-
function R to be available for the variants of sizes of input data X and round
key K. This can be simply settled by the following considerations;

Let |K| = |X| = N bits, K = [K3, K, K1, Ky, |K;| = % bits, and X =
[X3, X, X1, Xo], | X;| = % bits. And we assume that, by a similar key scheduling
algorithm with the present one, K was scheduled as @?:0 K; = 1V/%, Then the
resulting value of Bg (X) := X = [X3, Xy, X1, Xo] is defined as the following by
the same manner in the case of 128-bits:

BK(X) = [X37X27X17X0]7

3

Xo =P A Ky)
i=0

B 3

X1 = P(Xi A Kiga)
=0

) 3

Xy =P XA Kiya)
i=0

B 3

X5 = PXi A Kis),

i=0

and, if we let X = [Y,,_1,...,Y1,Yp] and |Y;| = 32 bits, the resulting value of
R(X) := Y is defined by repeating the functions P;’s of GF(23%) to GF(2%?)
constructed in section2.3 in the order of Pa, P3, P2, Py from the right most word,
as the following:

Y = [.- ,Pz(Y5),Pl(Y4),Pz(Yg),P3(Yz),P2(Y1),P1(Y0)]

Through this extensibility RAINBOW gets to be available for several variants of
block size with word by word increment.

5 Performance and Implementation Facilities

Our reference C-code implementation of RAINBOW runs at 9-10 MBytes/sec on
a 400MHz Pentium PC with Window95 operating system with 32MByte RAM.
But using effectively its parallelism it would be expected to be more optimized.

The first table in the following present the ECB-mode encryption speed for
three types of key-block combinations. And those figures in milli-seconds were
obtained with a raw resolution around 5ms and from these figures we can com-
puted the RAINBOW’s encryption/decryption times in clock cycles as in the
following second table(note 1ms=133000 clocks).

Key/Block|Init.Cipher|Encrypt [Decrypt |Key Init.
(1 Mbytes)|(1 Mbytes)|(1024times)
128/128 |32 ms 390 ms 380 ms 50.0 ms
192/128 |32 ms 390 ms 380 ms 51.2 ms
256/128 |32 ms 380 ms 390 ms 51.2 ms
Key/Block|Init.Cipher |Encrypt |Decrypt |Init.1Key|Key
(1 Block)|(1 Block) Change
128/128 4256000 clks|791 clks |771 clks (6494 clks|0
192/128 4256000 clks|791 clks |771 clks |6650 clks |0
256/128 4256000 clks|771 clks [791 clks |6650 clks |0

As mentioned in the section2.4, we chose the S-box functions f and f~! as
237 and 2'93 respectively and we make the RAINBOW’s S-box, RED, by using
the normal basis generated by the root of

px) =2+ 2" +2° + 23 + 1.

The concrete entries of the table, RED, were represented in appendix-A at the
end of this manuscript. Here are presented two considerations on the hardware
design of RAINBOW, one is based on the table(S-box) look-up method and an-
other is based on the wholly circuit designed(for the functions f and f~!) one, in
which the explanation on the facilities of our choice for f and f~! is presented.

5.1 Table Look-up Case

In this case, the S-box is stored in the memory devices, such as ROM, RAM,
etc.. And so, the circuit design costs required for the implementations of the
three functions, G, B, R are the followings;

e in G-layer : 128 XOR gates and one gate delay;
e in B-layer : 128 x 4 AND gates, (32 x 3) x 4 XOR gates
and 3 gate delays;

10

e in R-layer : 16 table look-up’s;

So, in total, the implementation of the 7-round RAINBOW, in this case, re-
quires 8 x (128 + 384) = 4096 = 4K XOR gates, 8 x 512 = 4096 = 4K AND
gates, 16 x 7 = 112 table look-up’s, and 4 x 8 = 32 gate delays and 7 table
look-up delays.

5.2 Circuit Design for S-box

As previously described, f = 237 = 22" +2°+1 and f1 = 219 = 22" +2°+1_ If we
use the normal basis of GF(2%) over GF(2) to design the functions, their imple-
mentation costs are same and they can be designed by the two sequential field
multiplications, since the terms, x> ’s can be achieved by only the right(or left)
bit-by-bit rotations of over the normal based representation. As well known,
there is no optimal normal basis of GF(2®) over GF(2) to facilitate the h/w
design of field multiplication and so we investigated all the N-polynomials([7][6],
this means the irreducible polynomials of which root generate a normal basis) of
degree, 8, over GF'(2) to find such N-polynomial as to generate the second best
normal basis of which complexity minimum.

There are just 16 N-polynomials of degree 8 over GF'(2) and we found that
there exists only one N-polynomial of which multiplication table(matrix)’s com-
plexity reaches the the minimum value, 21. The N-polynomial p(z) is

px) =28 +2" +2° +2° + 1. (10)

If we set p(x) as the defining polynomial for GF(2%) over GF(2), then its gen-
erating normal basis has the first field multiplication table(matrix), To(see [7]),

is represented as
00010000

00000011
00001010
10000111
00100100
00011000
01110001
01010011

This table tells us the design cost of one field multiplication. From this we
know that it, in total, requires 8 x 29 = 232 AND gates, 8 x 20 = 160 XOR
gates, and 7 gate delay, in the case of bit-parallel design. Therefore the design
of f requires two times of those complexities and so the whole R-layer’s needs
16 x 464 = 7424 ~ TK AND gates, 16 x 320 = 5120 ~ 5K XOR gates, and 14
gate delays.

Collectively, the whole circuit design for the 7-round RAINBOW requires 53K
AND gates, 39K XOR gates, and 130 gate delays. We think this is very effective
and the performance induced from this seems to make RAINBOW be applicable to
such areas of ATM, HDTV, B-ISDN, and Satellite. Further more the RAINBOW

11

was designed only by using bit-by-bit XOR and logic AND operations and using
8 x 8 S-boxes which have simple and effective implementation characteristics in
its VLSI circuit design structure. So it would be effectively applicable to 8-bit
processors, too.

6 Conclusion

In this paper, we described the structure of the newly proposed block cipher,
RAINBOW and considered its effective characteristics and its design rational. As
said previously, RAINBOW was designed to satisfy our goal, i.e. the key active
diffusion so that its layer, B-layer, cut off such hazards from the typical and
conventional attacks, differential cryptanalysis, linear cryptanalysis, higher order
differential attack, and interpolation attack. Its low-cost VLSI design structure
make it possible to be applicable to those application areas, ATM, HDTV, B-
ISDN, Satellite and such as Smart Cards using 8-bit processor. The referencing
C-code implementation of RAINBOW which is compiled by visual C++ runs at
9-10 MBytes/s on Pentium 400MHz with window95 operating system.

References

1. X.J. Lai, Higher order derivatives and differential cryptanalysis, In R. Blahut,
editor, Communication and Cryptography, Two Sides of one tapestry. Kluwer Aca-
demic Publishers, 1994. ISBN 0-7923-9469-0.

2. T. Jakobsen and L.R. Knudsen. The Interpolation Attack on Block Ciphers. Ad-
vances in Cryptology - Fast Software Encryption’97, Lecture Notes in Computer
Science , Springer-Verlag pp.28-40, 1996.

3. J. Daemen, L. Knudsen and V. Rijmen, The Block Cipher Square Advances in
Cryptology - Fast Software Encryption’97, Lecture Notes in Computer Science ,
Springer-Verlag pp.149-171, 1997.

4. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, 1993.

5. K. Nyberg. S-Bozes and Round Functions with Controllable Linearity and Differ-
ential Uniformity. Advances in Cryptology - Fast Software Encryption’94, Lecture
Notes in Computer Science 1008, Springer-Verlag pp.111-130, 1994.

6. R. Lidl, H. Niederreiter, Finite Fields. Encyclopedia of Math. and its Application,
#20.

7. Alfred J. Menezes, Applications of Finite Fields, Kluwer Academic Publishers,
pp.83, 1993.

8. M. Matsui. Linear Cryptanalysis Method for DES cipher, Advances in Cryptol-
ogy - EUROCRYPT’93, Lecture Notes in Computer Science 765, Springer-Verlag,
pp-386-397, 1994

9. V.Rijmen, J. Daemen et al., The Cipher SHARK, Fast Software Encryption, LNCS
1039, Springer-Verlag, pp.99-112, 1996.

12

A Appendix

A.1 The S-box RED of RAaINBOW

Here are listed the tables of f and f~* and the whole table of RED[512] is given
by pasting these two tables in this order.
e Table of f.

0z00 O0z0e Oxlc 0208 0xz38 Ozed5 0210 0z19
0270 O0x16 Owzcb 0x42 0x20 Oze7? 0x32 Oxd4
O0ze0 Oxzcec 0x2c¢ 0x65 0297 Oxa7 0x84 0zlf
0240 0267 Ozcf 0x78 0264 0x2d 0za9 Oxzbe

Ozcl 0Oxc2 0299 Ozec 0z58 Oxdl Oxca Oxfb
0z2f 0x8e O0z4f O0x6d 0xz09 0z50 O0z3e Ox2a
0280 0x56 Ozce Ox11 0z9f O0z0c O0zf0 Oxad
0zc8 Oxdf O0x5a 0xzbl 0z53 0273 0z7d 0z6f
0283 0x279 0285 0zf9 0x33 0xe9 0xd9 0x4b

0zb0 0274 Oxa3 0xzl4 0295 0203 O0zf7 Ozdc
O0zb5e Ox7a Ozld OxcO 0xz9e 0z55 Oxzda 0x26
0z12 0x6b Ozal0 Oxd5 Ox7c 0x98 0x54 0x72
0201 0x48 Ozac 0x0f 0z9d Ozad 0x22 0x36
0z3f 0282 0zx18 Oxba Ozel O0z57 0z49 Ozx2e

0291 Oxfl Ozbf Oxda O0xb4d 0z62 0x63 Oxee

O0zab 0x51 Oze6 0x71 Ozfa Oxzc9 Oxde O0x43
0207 0xz04 Ozf2 0x8c 0z00 0221 O0zf3 Ox6a
0266 O0xb2 O0xzd3 O0x8f O0xb3 O0xz3c 0x96 O0z5f
0261 0x76 O0ze8 Oxfd 0x47 O0xzb6 0z28 0x15
0z2b 0288 0206 0z52 Ozef O0xd8 0xb9 0xb7

Ozbc Oxfc Oxf4d Ozad Ozxz3a O0x0a 0x81 Oz6e

0z3d 0x60 Ozaa O0x13 O0xb5 Ozea Oxdc 0x39
0224 0287 O0xzd6 Ox1lb O0x41 O0xz5d Oxab Ox17
0zf8 0x25 0z31 0x77 Oxa8 0xb8 0zed Oxal
0202 0246 0290 0235 0259 Oxzc7 Oxle Oxaf
0z3b Oxfe 0z5b 0x8a 0x44 0z29 0z6c Oxdb

0z7e Oxd2 0z05 0x37 0xz30 0z89 0z75 0z9c

O0zc3 0x8d Ozae 0x8b 0x92 O0xzbb O0x5c 0xd0
0223 029a Ozed Oxd7 O0z7f O0x45 0x94 Oxed
0269 0290 0zcd Oxde O0xzc6 O0zcd 0zdd 0268
0z4d Oxeb Oza2 0zf6 Ozcd 0227 Oxe2 0234
Ozf5 0x7b 0293 Oxla Oxbd 0z0d 0x86 Oxff

13

e Table of f~!.

0200
0203
0206
0x6a
0x0c¢
0z96
0xd4
0204
0218
0x61
0z2d
0x24
0xa9
Ozef
0z08
0z1b
0z30
0299
0xc2
0z5d
O0xda
O0zbc
0248
0zbd
0z53
0x38
Oxdf
0z9d
0210
0292
0z36
0zb8

0x60
0x2c
0233
0x07
0285
Oxcd
Oxba
Ozaf
0xb4
Ox6e
0x79
Oxcd
0290
Oxe8
0x7b
Ox41
Oxab
0xdd
0270
0x22
0xbf
Oxle
0x3b
0x9e
0220
0x7d
0225
0246
0x6¢
0245
0271
0x43

0xc0
Ozad
0258
0z fb
0z66
0x2f
0x0e
O0xad
0z0b
0z73
0z9b
0x3a
0x75
0287
0x5f
0x51
0z69
Oxcb
Oxdc
Oxel
0z f2
Ozaa
0289
0z6b
0x21
0x26
O0zdl
0z56
0z f6
Oxad
0282
0x7c

0z4d
0284
Oxab
0zb3
Oxel
0298
0z44
O0xc8
0x7f
0x47
0x3c
Oxca
0x76
059
0z3d
0z f9
0z40
O0zdb
Oz fa
O0xe9
Oxda
0zb6
0x8c
O0zdd
0zd8
0x0a
0x8a
Ozcf
Oxe2
0z f1
0z86
0x27

0281
0z35
0x4b
0202
0zb0
Ox12
0z f7
0z8d
Oxce
Ozxae
Ox5e
Oxde
Oxlc
Oxce
0z49
0x5c
0z16
0283
Oxeb
0xdT7
0x37
0x62
0x74
0xal
Oxea
Ox11
0z0 f
0z4f
Oxbe
0223
Oxa?2
Oxal

14

0xd2
Oz fd
0297
0x52
0xb9
0xld
Oxc3
Oxa8
Oxed
0z f0
0x55
0xbd
0x13
0220
0xd6
Ox3e
0x42
0xd9
Ox4c
0x64
Oxa3
0x65
Ozac
Oz fe
Oxed
Oz f4
0x5b
Ozee
0205
Oxe7
0z f8
0293

029a
0201
0209
O0xcb
0x57
0z6 f
0267
0x2e
Oxcl
Ozeb
0x31
0250
0288
0za7
0291
0zd0
Oz fe
0229
0x8e
0x54
0x78
Ozda
0295
0z1f
Oxec
0x32
0xb2
0zx7e
0z7a
0x77
0z f3
0xc9

0z80
0263
0xb7
0x17
0z f5
0z28
0zd3
0268
0294
0x2a
0z6d
0z8f
0219
0z3f
0xbb
Oxed
0zbl
0z8b
0x14
0x34
0z15
Oxc7
0z9f
0x72
Oxcd
Oxla
Oxe3
0239
0z0d
0x9c
Oxde

Oz ff

