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A combined digital signature is method of making a single
Correspondence Address: public key digital signature on a number of messages, such
Eric Hughes that individual combined signatures may be extracted and
1577 Rose Street individually presented. The mechanism of a combined digi-
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(22) Filed: Mar. 26. 2001 comprises a method of making a combined signature, a
’ B method of extracting individual combined signatures, a
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data format of an individual combined signature. The inven-
(51)  Int. CL7 s HO04L 9/00 tion can increase performance of signature-making by a
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5.1 N : the natural numbers 0,1, 2, 3, ...

5.2 L :a security parameter for cryptographic hash functions

53 H = =" = set of all bit strings of length L

5.4 ¥" =set of all bit strings of any length

5.5 F :¥" — H:acryptographic hash function of output length L
5.6 P :a security parameter for a public key signature scheme

5.7 J =X =set of all bit strings of length P

5.8 K, : the space of private keys of the signature scheme

5.9 K, :the space of public keys of the signature scheme

5.10 Sy 1K xJ — J: the signing operation of a private key

5.11 Vi 1 K, xIxJ — B the verification predicate of a public key

5.12 H" : positive length sequences of valuesin H

5.13 #:H" — N : the length of a sequence

5.14 M ={M,}< H" :a sequence of messages

5.15 n=#M : the number of input messages; also the size of a hash tree

5.16 Basel0:N — Z° : represents a number as an ASCII base -10 integer
5.17 Base64 :N — =" : represents a number as an ASCII base - 64 integer
5.18 quote : a constant, the ASCII quote character

5.19 +:Z" — &7 : string concatenation

5.20 B = {true, false}: boolean values

Figure 5
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T, © Nx N : the set of positions in an ordered tree of size n
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ordinary, :NxN—B:(i, j) > ((z',j) eT,)n (/ = +2507) —1)

"ordinary nodes are stable"<>
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7.1 VT, = {N: T, — H}:set of valued trees
- "N € VT, is a well - constructed hash tree" <

Vi,u,veT, u=Left, (t)rv= Right, (¢) > N()= NodeHash, (z, N(u), N())

7.3 NodeHash, : T, xHxH — H : <<i, i) x, y> > F o NodeFormat,, ((i, i), y)

7.4 NodeFormat, : T, x HxH — £ : a position - dependent formatting function
7.5 N, € VI, :hash tree generated from leaves M
T N1, | NodeHash,; (t, Nz o Left,; (¢ Ny o Right, (1)) whenseT?,
M M, when ¢ = (i, i)

77 [ "ordinary nodes have stable values"<

' |Vie T,,M,PcH": (ordinarym(t) AMcP )—) (Nﬁ(t): NF(t))
78 ["hash tree NV e VT, is valid for message sequence M "<>

' I N=N;
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RootFormat(n, x,y) when (1,/)=(0,n-1)

8.1 NodeF (i
odekormat, <<I’J >’x’y>H{ParentFormat(xay) when (i, j) € T, T,

RootFormat(n, x, y)="< root"
+"size ="+ Base10(r)
8.2 +"left ="+ quote+ Base 64(x )+ quote
+ "right ="+ quote+ Base 64(y)+ quote
+"/>"

ParentFormat(x, y) ="< node"
+"left ="+ quote+ Base 64(x) + quote

8.3 )
+"right ="+ quote+ Base 64(y ) + quote
+ H/ >||
Figure 8
9.1 U, =T, U {P,S}: node set for combined signature tree
9.2 R=(0,n-1)e T, c U, :root node of hash tree
9.3 parent(R) =P
' parent(P)=S
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10.1 VU, = {N U, > E*}: set of valued trees
"N e VU, is a well - constructed combined signature tree"<>

N | T is a well - constructed hash tree"

10.2 :
A N(R)=PadStrip(N(P))
AddeK, :V,(d,N(S) N(P))
10.3 N, , € VU, : combined signature tree generated by ec K, M e H*,ze =7
SEG (e’ Ne,ﬂ,z (P)) if u=S
104 N, :ur>{PadFormat(N, ; (R).z) ifu="P
N_() ifueT,
"combined signature tree N € VU, is validford e K ,,M e H "
L0 "N is a well - constructed combined signature tree"

A Vg (da N(S)= N(P))
A N(R)= Ny (0,#M 1)

Figure 10

11.1 PadFormat : Hx =" — J : hash value padding function
11.2 PadFormat:(h,z) > h+z

11.3 PadStrip : J — H : pad stripping

11.4 PadStrip: j > j[0,2-1]

11.5 Padding : J — £°~* : pad extraction

11.6  Padding: ji j[L,P-1]

11.7 "inverse on first parameter'< Vh,ze X 1 h= PadStrip(PadFormat(h, z))
11.8 "inverse on second parameter"<> V i, z € £* : z = Padding(PadFormat(#, z))
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13.1 ExtractedSignature : K, x H' x " xN —» I°
13.2 SiblingSeq: H* x Nx N — X"
SignTagStart(N oz ($)z,#M )
13.3 ExtractedSignature : <e,1\7, z, t> ]+ SiblingSeq(M , t,O)
+ SignTagEnd()
SibTag(side,;  ,» Nor (S, .. )

#M Lk

13.4 SiblingSeq <M— A k> - n SiblingSeq(M, Lk + 1)

} when £ < L(O,#JW—I)
" when k = L(O, #M ~l)

" "< signature"

+ "value ="+ quote+ Base 64( )+ quote
13.5 SignTagStart : Jx =" xN — £°:(,z,n) > | + "pad ="+quote+ Base 64(z)+ quote
+"size ="+Base10(r)

+ II>"
13.6 SignTagEnd: —ZX": > "</signature >"
"<"+S
13.7 SibTag: ' xH — X" :(s,v) > | + "value ="+ Base 64(v)
+ "/ >H
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z e 7" :padding bits
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extracted signature = o
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8, ...8;_, € H:sibling values

XS € K xHx JxZ77F xNx Nx {lefi, right ' x H* : extracted signature verification
XS =(d,M,s5ig, 2,1, L,{p, ... p,_ b 1505, )
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parent(S, ) =B,

parent(B, )= B, wheni< L |: edges of the base tree of a verification tree
parent(B, )= P

Ny € VW, =\N: W, —> Z": verification tree

M when w= B,
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N twi> 1 NodeHash, (P(B, ) N (S, ) N5 (B_,)) whenw=B,0<i<L, p, =lefi
NodeHash, (P(B,) N s (B )y N (S,,) whenw=B,0<i<L, p =right

PadFormat(N (B, )z) when w =P

Left, (BM) whenw=B,i< L, p =right
Py {BO ...BL}—> T, :w> Rightn(B,H) whenw=B,i< L, p =left
<O,n—1> when w=B,

"signature is well - formed"
A Pe(B, )is defined
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"signature is valid for (d, M )" <
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23.7.3  NodeHash,,,, :HxH—H:(x,y) > F(salt + NodeFormat, (x, ))

"< signature "
+ "value ="+ quote+ Base 64( j )+ quote
+ "salt ="+ quote+ Base64(salt )+ quote
+ ">

23.13.5 SignTagStart : IxH — X :(/, salt) >

Figure 23B

. LayerFormat("bottom",x, y) when|i—j| =1
24.8.1  NodeFormat, : (i), x,y)-> LayerFormat("top", x, ) otherwise

LayerFormat(name, X, y) ="<"+ name +
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+ "/ >|I
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Figure 26A

NodeHash,__(t, N o Left, (1), N oRight (r)) whenze T}
LeafHash(M,) when ¢ =(i,1)

2676 Nyt {
26.1 LeafHash: Nx H — H : x — F(LeafFormat{x))

LeafFormat(x) ="< leaf"
26.2 +" value ="+ quote + Base64(x)+ quote
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29.1 W, =W, \ P:nodes of the base tree of a verification tree
29.2 Ny = Ny, : verification tree
L
29.3 Vi : K, xJ — J :message recovery operation for signature verification

"signature is well - formed"
A Py (B, )is defined

ATi: Py(B,)={ii)
A PadStripe ¥, . (d, sig)= N5 (B, )

Figure 29
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COMBINED DIGITAL SIGNATURE

BACKGROUND
[0001] 1. Field of the Invention

[0002] The present invention relates generally to methods
and apparatuses for generating digital signatures. More
specifically, the invention relates to systems, methods, and
data structures that provide efficient and cost-effective gen-
eration of digital signatures for servers that participate in
many transactions simultaneously and which require tens of
thousands of signatures per second.

[0003] 2. Description of the Related Art

[0004] The recent explosion of Internet e-commerce has
led to a corresponding demand for security and authentica-
tion in online interactions. Digital signatures using public-
key cryptography are the most widely used mechanism for
secure authentication. Digital signatures are at the core of
widespread connection-oriented protocols such as SSL,
TLS, and SSH. In each of these cases, the digital signature
is used to establish a firm basis of identity before proceeding
on with the connection.

[0005] Connection-oriented protocols have proven the
efficacy and utility of digital signatures. These protocols,
however, are relatively light users of digital signatures. Each
side identifying themselves makes a signature to allows a
receiver to identify data received from that connection.
Nevertheless, the total signature load generated in typical
web server is too great to support without special assistance.
A typical such server can process hundreds of simultaneous
connections. A moderately loaded server now has hundreds
of digital signatures to make per second. This level of
signature load is beyond the capacity of standard CPU’s.

[0006] The current state of the art in dealing with this
burdensome computational load are cryptographic co-pro-
cessors. Some of the most best-known manufacturers of
these devices are nCipher, IBM, and Rainbow Technologies.
The current practice is as follows: an application (such as a
web server) requests a digital signature from an internal
software proxy that forwards the request to the special
hardware accelerator for processing; the results are remitted
back to the application. Current practice for accelerating
signatures is entirely typical of any other computational
CO-Processor.

[0007] This practice has just sufficed for the current gen-
eration of connection-oriented security protocols. Other
protocols, however, have not fared so well, largely because
they are much heavier users of digital signatures. The most
notable example of this kind is SET, the suite of credit card
payment processing protocols. SET is a heavy user of digital
signatures. It is a multi-party protocol, with each party
signing multiple messages in each protocol session. Further-
more, an acquiring bank has an especially concentrated load.
Suppose each merchant has, say, dozens of simultaneous
purchasers at their web site. The larger acquiring banks have
hundreds of online merchants and need to support thousands
or tens of thousands of simultaneous purchase transactions.
Hardware accelerators do not scale well enough to support
this application. Instead of a single hardware accelerator,
large banks of hardware accelerators would have to be used.
This has not proven feasible.
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[0008] SET was announced in 1996, and its precursor
protocols, SEPP and STT, were themselves announced in
1994. SET has the backing of both MasterCard and Visa, and
many top cryptographers have worked on the protocol and
had the opportunity to examine it. Since this work began, the
issue of digital signature load has only been addressed
through hardware acceleration. Given the ubiquity of credit
card use and the amount of spending and talent that has gone
into the SET initiative, the failure of the designers and
cryptographers working on SET to create a scalable digital
signature is notable. SET has been around a number of years,
and there is a long-felt but unsolved need in the market for
new systems and new methods for digital signatures that
provide adequate performance for these kinds of applica-
tions.

[0009] Inlight of the foregoing, it would be useful to have
ameans of making digital signatures at the high rates needed
to support sophisticated electronic commerce applications.
Ideally, the core mechanism would embody an algorithmic
change from current practice, since algorithmic efficiency
dominates performance concerns. An incrementally faster
hardware accelerator cannot offer the same throughput
increases as can a redesign around an appropriate algorithm.

[0010] Typical cryptographic practice presumes that each
signature is performed one at a time. The goal then is to
make each signature operation faster. The speed of these
hardware accelerators is limited by fundamental computa-
tional delays. Accordingly, it would be useful if it were
possible to perform multiple signatures simultaneously,
leveraging the computational capacity of existing hardware.

[0011] Prior Patented Art

[0012] The prior art in digital signatures is extensive. It
began with the pioneering work of Diffie, Hellman, and
Merkle. Early in the field, two fundamental approaches to
digital signatures were developed. The best known
approach, namely, public key cryptography, is exemplified
in U.S. Pat. No. 4,200,770 “Cryptographic apparatus and
method” (Hellman, Diffie, Merkle) and U.S. Pat. No. 4,218,
582 “Public key cryptographic apparatus and method” (Hell-
man, Merkle). These public key algorithms were the original
inspiration for all the subsequent work that has followed.

[0013] The other approach to digital signatures, less used
but still powerful, is that of hash trees, as demonstrated in
U.S. Pat. No. 4,309,569 “Method of providing digital sig-
natures” (Merkle) and U.S. Pat. No. 4,881,264 “Digital
signature system and method based on a conventional
encryption function” (Merkle). These two approaches both
implement the concept of the digital signature. Nevertheless,
the two approaches each have their own strengths and
weaknesses.

[0014] Both public key signatures and hash tree signatures
each have unique verifying data that is necessary to verify a
signature. With public key signatures, this verifying data is
a public key. With hash tree signatures, the verifying data is
the root of a hash tree. These verifying data do not identify
the maker of a signature in isolation. The verifying data are
purely technical instruments. They do, however, provide a
point of reference about the signature that may allow the
maker to be identified, given other information.

[0015] This other information is an assertion that a named
maker of signatures is linked to particular verifying data. A
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cryptographic signatures that verifies correctly against stated
verifying data may be presumed to originate from the named
maker. A verifying party relies upon trustworthy public
dissemination of this linking data to identify the maker of a
signature. Without a linkage between verifying data and the
name of a maker, neither cryptographic signature mecha-
nism can possibly function as means of digital identification,
much less as a digital signature.

[0016] In both kinds of cryptographic signatures, both for
public key and for hash tree signatures, the verifying data is
compared against a message and a signature itself. A suitable
verification algorithm, which depends upon the particular
signature scheme, determines technical integrity of a signa-
ture. Then, after examining the linkage between a named
maker and the verifying data, a verifier can learn the identity
of the maker of a signature. Both kinds of cryptographic
signature use this basic structure. The key difference
between them is at what point a signature can first be used
to identify a maker.

[0017] The advantage of public key schemes is that link-
ing data can be distributed before signature verification.
Verification of a public key signature may occur immedi-
ately upon presentation. In contrast, hash tree signatures
become verifiable only after construction of a tree and
publication of its root. The difference, though insignificant
in many applications, is critical for real-time uses, e.g.
remote login and transaction authorization. The latency
inherent in the construction and publication of hash tree
roots eliminates the possibility of real-time operation. It
would therefore be useful to capture the advantage of
real-time operation that public key signature schemes afford.

[0018] On the other hand, hash tree signatures are enor-
mously more computationally efficient than are any known,
secure public key systems. As a rule of thumb, a single
public key signature takes about as long as one-thousand to
ten-thousand hash function computations of similar size and
security. (The exact ratio varies widely, depending upon
choices of algorithm, security model, cryptographic param-
eters, and means of implementation.) Hash tree signature
methods yield one signed message for every one or two hash
function computations (depending on the particular tree
structure chosen). Thus the performance difference is tre-
mendous. It would therefore be useful to capture the per-
formance advantage of hash tree signature methods.

[0019] Related Patented Art

[0020] The inventive progeny of the hash tree signatures
of U.S. Pat. Nos. 4,309,569 and 4,881,264 are numerous.
The basic hash tree concept has also been applied in numer-
ous inventions in diverse areas of security, including ciphers,
message authentication codes, secure channels, key man-
agement, public key infrastructure, identification, user
authentication, time-stamping, document authenticity, digi-
tal rights management, trusted computing bases, secure
boot, spread spectrum, and data compression. Relatively few
of these inventions, however, are about making digital
signatures proper. Instead, the technology of the hash tree
has been applied to numerous other cryptographic tech-
niques, very few of them for making signatures. The fol-
lowing is a review of the closest other work involving hash
trees and digital signatures as they relate to making digital
signatures.

[0021] U.S. Pat. No. 5,754,659 “Generation of Crypto-
graphic Signatures Using Hash Keys” (Sprunk, Moroney,
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Candelore) discloses a straightforward application of the
hash tree concept to prior art for access control in broadcast
environments. As in the original hash tree work, U.S. Pat.
No. 5,754,659 uses a hash tree to combine multiple data
elements. Yet the multiple data elements so combined are
not documents to be signed, anticipating separate verifica-
tion of the signatures. Instead, data elements are combined
to implement an access control system suitable for protec-
tion of broadcast content. U.S. Pat. No. 5,754,659 transmits
a single signature over a broadcast channel. This invention
does not anticipate transmitting separate signatures to indi-
vidual parties. It would be useful to have a system that
signed individual messages from disparate sources and
separated out those signatures for individual transmission.

[0022] A complementary analogue to making digital sig-
natures is found in U.S. Pat. No. 5,347,581 “Verification
process for a communication system” (Naccache, M’Raihi).
The invention disclosed in U.S. Pat. No. 5,347,581 is a
system for simultaneous verification of signatures. A number
of signatures are made on the client side, presumably by a
number of different parties. A server simultaneously verifies
all these signatures with a single operation. It would be
useful to have a system for simultaneously making a number
of signatures, complementing one that could simultaneously
verify a number of signatures made separately.

[0023] U.S. Pat. No. 5,781,629 “Digital document authen-
tication system” (Haber, Stornetta) describes a system for
making timestamps on digital documents. To use a hash tree
signature as a means of identification, one has to publish a
link between the verifying data of the hash tree and the
maker of a signature. The invention disclosed in U.S. Pat.
No. 5,781,629, instead of publishing identifying informa-
tion, publishes instead a connecting link between the veri-
fying data and some temporal data concerning the time a
document was received. This invention authenticates the
existence of a document at the current time, rather than the
identity of its maker. While this is a perfectly reasonable use
of the word “authentication”, the more common use is
related to identification of persons, which this invention is
not concerned with. It would be useful to apply the basic
hash tree signature to identification, rather than to tempo-
rality.

[0024] The hash tree signature method has a security
hazard when practiced in the context of a signature server.
A signature server receives a number of messages to be
signed. If a hash tree is constructed naively, the message to
be signed could itself have been constructed as the root of a
separate hash tree. The signature obtained from the engine
could then be extended. Whereas the server thought it was
signing only the single message it received, it might have
effectively been signing hundreds of converted signatures.
The attack against this vulnerability is called a “tree exten-
sion” attack. It would be useful to have techniques for
guarding against tree extension attacks.

[0025] In view of the foregoing, it would be useful to
apply the original work of Merkle to construction of faster
methods of making digital signatures with the verification
properties of public key signatures. This lacuna in the art is
surprising, particularly in light of the immediate commercial
opportunity such an invention would present.
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SUMMARY

[0026] In accordance with the present invention, a com-
bined signature is a hash tree constructed from a sequence of
messages combined with a conventional public key signa-
ture made upon the root of the hash tree.

[0027] Objects and Advantages

[0028] In addition to the objects and advantages of the
combined digital signature as described in this patent, sev-
eral objects and advantages of the present invention are as
follows:

[0029] a) to provide a means of making digital sig-
natures hundreds of times faster than conventional
public key signatures;

[0030] b) to provide a common facility for making
digital signatures that a number of simultaneously
running programs within a single computer can use;

[0031] o) to provide a common facility for making
digital signatures that a number of computers on a
network can use to request and receive signatures
over that network;

[0032] d) to provide a common facility for making
digital signatures that can provide enough total
throughput to support individually signed messages,
complex network protocols, and multiple simulta-
neous servers, each with multiple simultaneous con-
nections; and

[0033] e) to provide a means of making digital sig-
natures that guards against conversion of the result-
ing signature into some other signature.

[0034] Further objects and advantages will become appar-
ent in the ensuing descriptions and drawings.

DRAWINGS
[0035] Figures

[0036] FIG. 1 shows an illustrative combined signature
tree for thirteen messages, a hash tree with leaves generated
by those thirteen messages, and a public key signature at the
top.

[0037] FIG. 2 shows an illustrative pruned signature tree,
a sub-graph of FIG. 1, which is a minimal sub-tree for an
individual combined signature.

[0038] FIG. 3 shows an illustrative individual combined
signature.
[0039] FIG. 4 show a reconstructed verification tree,

which was reconstructed from the signature of FIG. 3.

[0040] FIG. 5 shows some of the notation used in the
Figures.
[0041] FIG. 6 show a specification for a class of left-

balanced binary trees.

[0042] FIG. 7 shows a specification for a class of position-
dependent hash trees.

[0043] FIG. 8 shows a specification for a set of formatting
functions.
[0044] FIG. 9 shows a specification for the nodes of a

combined signature tree.
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[0045] FIG. 10 shows a specification a class of combined
signature trees.

[0046] FIG. 11 shows a specification for a set of padding
functions.

[0047] FIG. 12 shows a specification for a subset of nodes
that comprise an extracted signature tree from a complete
combined signature tree.

[0048] FIG. 13 shows a specification for a presentation of
a signature node-set for transmission to another party.

[0049] FIG. 14 shows a specification of a predicate that
defines validity of an extracted individual combined signa-
ture.

[0050] FIG. 15 shows a block diagram of a device that
accepts a message sequence and a message selection and
outputs an individual combined signature.

[0051] FIG. 16 shows a block diagram of a device that
accepts an individual combined signature, a message, and a
public key and outputs “valid” or “invalid”.

[0052] FIG. 17 shows a flowchart for an algorithm that
constructs a combined signature tree from a set of messages,
a set of padding bits, and a private key.

[0053] FIG. 18 shows a flowchart for an algorithm that
verifies an individual combined signature relative to a mes-
sage and a public key.

[0054] FIG. 19 shows an illustrative timing diagram that
shows an exemplary excerpt of the activities of a continu-
ously running signing device.

[0055] FIG. 20 shows a state machine for a hash tree
constructor as shown in FIG. 15.

[0056] FIG. 21 shows a state machine for a root node
signer as shown in FIG. 15.

[0057] FIG. 22 shows a state machine for a signature
extractor as shown in FIG. 15.

[0058] FIG. 23A shows a variant of a combined signature
tree with an additional “salt” node.

[0059] FIG. 23B shows a sample of variant definitions for
the use of salted hash functions.

[0060] FIG. 24 shows a variant definition of a node
formatting function.

[0061] FIG. 25 shows another variant definition of a node
formatting function.

[0062] FIG. 26A shows a variant of a combined signature
tree with a leaf layer separate from a message layer.

[0063] FIG. 26B shows a sample of variant definitions for
the use of separate leaf and message layers.

[0064] FIG. 27 shows a variant signature start tag for an
individual combined signature.

[0065] FIG. 28 shows a variant pair of verification trees.

[0066] FIG. 29 shows a sample of variant definitions of
extracted signature validity.
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-continued

List of Reference Numerals

List of Reference Numerals

FIG. 1 320T. Left sibling tage for node
100. Combined signature tree 8,9
101. Leaf node layer 332.  Attribute value of node
103. Parent node layer 12,12
104. Public key signature 332T. Right sibling tag for node
layer 12,12
111. Leaf node 10, 10 340. Attribute value of node 0, 7
112. Leaf node 11, 11 340T. Left sibling tag for node
120.  Node 8,9 0,7
121. Node 10, 11 371.  Attribute value of signature
131. Node 8, 11 371T. Signature start tag
132. Leaf Node 12, 12 372.  Attribute pad for hash tree
140. Node 0, 7 root
141. Node 8, 12 373. Attribute size of tree
151. Root node 0, 12 379T. Signature end tag
161. Padding node FIG. 4
171. Signature node 400.  Verification tree
FIG. 2 401.  Candidate signature edge
200. Pruned signaure tree 411. Message node
206. Signature branch 412.  Sibling node 0
207. Siblings of branch 420.  Sibling node 1
FIG. 3 421 Branch node 1
300T. Individual combined 431.  Branch node 2
signature 432.  Sibling node 2
307T. Sibling tags section 440.  Sibling node 3
312.  Attribute value of nodes  441.  Branch node 3
11, 11 451. Hash tree root node
312T. Right sibling tag for node 461.  Padding node
11, 11 471.  Signature node
320.  Attribute value of node  FIG. 15
8,9 1500. Message sequence source
1501. Private key storage 1711. Message selection
1502. Padding source FIG. 18

1503. Hash tree constructor 1800.  Parsing procedure

1504. Root node signer 1801.  Individual combined
1505. Message selection signature
1506. Signature extractor 1802.  Good-form test
1507. Signature output 1803.  Signature rejection
1510. Hash tree signal 1804.  Verification subtree
1511. Combined signature tree construction

signal 1806.  Valid branch test
FIG. 16 1807.  Signature rejection
1600. Signature source 1808.  Root value calculation
1601. Message source 1809. Message
1602. Parser 1810.  Public key verification
1603. Public key storage 1811. Public key
1604. Branch constructor 1812.  Verification check
1606. Public key verifier 1813.  Signature rejection
1607. Verification output 1814.  Signature acceptance
FIG. 17 FIG. 19

1700. LBB-tree construction 1901.  First message input

procedure 1902.  Tenth message input
1701. Message sequence 1911. Queuing activation
1702. Leaf valuation procedure 1921.  First tree increment
1704.  Tree valuation procedure activation
1706. Padding procedure 1922.  Tenth tree increment
1707. Padding bits activation
1708. Private key signature 1930B. Signing tree activation
operation 1930C. Coordination signal
17009. Private key 1931A. Tree completion activation
1710. Extraction procedure 1931B. Signing tree activation
1951. Sending activation 1941.  Extraction activation
FIG. 20 FIG. 22
2000. Initial state 2200.  Initial state
2001. Idle state 2201.  Idle state

2002.  Waiting state 2202.  Extracting state

2003.  Sending state 2203.  Initializing state

2004.  Constructing state 2204.  Extracting-Next state
2010.  Message transition 2205.  Sending state

2011. Ready transition 2210.  Tree transition

2012.  Automatic transition 2211, At-end transition

2013.  Ready transition 2212.  Signature transition
FIG. 21 FIG. 27

2100.  Initial state 2771.  Attribute value of signature
2101.  Idle state 2771T.  Signature start tag
2102.  Waiting state 2773.  Attribute size of tree
2104.  Sending state FIG. 28

2105.  Completing state 2800.  First verification tree
2106.  Signing state 2801.  Second verification tree

2110.  Workspace transition 2851.  Second hash tree root node
2861.  Padding node
2871.  Signature node

DETAILED DESCRIPTION
[0067] Description—Preferred Embodiment

[0068] A preferred embodiment of the present invention is
a device for making and verifying combined signatures. The
combined digital signature of the present invention is a fairly
complex piece of cryptographic specification, algorithms,
processes, and devices. The description of a preferred
embodiment requires extensive mathematical notation to
fully disclose all the relevant details of a preferred embodi-
ment. As such, it is worthwhile to start with an overview of
this description.

[0069] The description, as a whole, is divided into three
parts. The first part reviews the prior art in cryptographic
hash trees and illustrates the combined signature tree of the
present invention. Since the combined digital signature
makes use of an improvement to the Merkle hash tree
construction, it is useful to quickly get an idea about where
the hash tree fits into the context of the present invention.
The illustrative figures are examples for all the later nota-
tion.

[0070] The second part of the description contains speci-
fications for mathematical relationships between data ele-
ments inside a computer system that are necessary for a
combined digital signature to function properly. While the
concepts are relatively straightforward, the combined sig-
nature is nevertheless cryptography and the details are
important to a proper and complete disclosure of the present
invention.

[0071] The third part of the description shows block
diagrams of devices for signature making, extraction, and
verification. The purpose of the block diagrams is to
describe the specific function of each block in relation to the
overall device and to specify the electronic signals that pass
between them. The specifications of the second part of this
description allows a compact description of the devices
themselves.
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[0072] Part 1—Illustrations of a Combined Digital Signa-
ture, FIGS. 1-4

[0073] The Merkle Hash Tree

[0074] 1t is useful to review to begin with the structure of
the Merkle hash tree, disclosed in U.S. Pat. No. 4,309,569,
which is herein incorporated by reference. At the bottom is
a set of messages (“data items” in the original patent); the
number of messages is a power of two. To these messages
corresponds a set of leaf nodes, each with a value computed
by applying some cryptographic hash function F( ) to a
message. These leaf nodes are arranged as the leaves of a
binary tree. The value for each parent node is the result of
applying the same cryptographic hash function F( ) to the
values of the two child nodes. Since such cryptographic hash
functions operation on bit strings of arbitrary length, there is
no confusion as to the hash function taking one or two
arguments. The convention is that multiple arguments are
simply concatenated. At each layer the number of parent
nodes is half the number of nodes of the layer below. At the
top there is but a single node; this node is the root node of
the hash tree.

[0075] An object of the Merkle hash tree is that individual
hash tree signatures can be split off from the entire tree. Each
individual hash tree signature is short, even when the tree is
large. An individual hash tree signature consists of all the
siblings of the nodes on the branch from leaf to root, and an
indication of whether each such was a left sibling or a right
sibling. Thus instead of sending a whole tree of size n, one
can send a set of branch of about size log, n. The present
invention preserves this advantage of the Merkle hash tree.
ps FIG. 1. Exemplary Illustration of a Combined Signature
Tree

[0076] FIG. 1 shows an illustrative combined signature
tree 100 for thirteen messages. The combined signature tree
100 is made up of three layers.

[0077] 1. Leaf node layer 101 contains one leaf for
each of the messages to be signed, numbered in a
definite, fixed order.

[0078] 2. Parent node layer 103 contains the parent
nodes of a Merkle-style hash tree. A root node 151 is
the root of this hash tree.

[0079] 3. Public key signature layer 104 contains a
public key signature on hash tree root node 151. The
public key signature consists of a padding node 161
and a signature node 171. Signature node 171 is also
the root of combined signature tree 100.

[0080] To each node in a combined signature tree is
assigned a value. The value of a leaf node is its correspond-
ing message. Each message is taken to be a short bit string
of some fixed length. As is standard cryptographic practice,
one may generate such a message from a larger document by
application of a cryptographic hash function.

[0081] The values in parent node layer 103 are assigned
values with a Merkle-style hash tree. The values in public
key signature layer 104 are assigned values accordingly to
the dictates of a public key signature scheme. Padding node
161 requires an external source of padding bits; its value is
the value of hash tree root node 151 plus the padding.
Strictly speaking, padding node 161 is the one that receives
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the signature whose value is in signature node 171. Con-
struction of signature node 171 requires the signer’s private
key.

[0082] A number of nodes have reference numerals
attached to them in FIG. 1. Briefly, the individually num-
bered nodes in FIG. 1 are the relevant nodes for extraction
of an individual combined digital signature on message 111.
These other nodes are, briefly, leaf nodes 112 and 132,
parent nodes 120, 121, 131, 140, and 141, a root node 151,
a padding node 161, and a signature node 171. These nodes
comprise a sub-tree of combined signature tree 100. This
sub-tree is illustrated in FIG. 2 and discussed below.

[0083] Component Parts and Validity of an Individual
Hash Tree Signature

[0084] There is a unique linear tree (that is, one with no
side branches) from every node in a tree to the root of that
tree; we will call this linear tree the “branch to root”. A
Merkle hash tree signature is a set of all siblings of each
node on a branch from a certain leaf to root. This set of
siblings is called an “authentication path” in the original
patent. The siblings are minimally specified by their node
values and their positions relative to the branch to root, that
is, whether they are left or right siblings.

[0085] WValidity of an individual hash tree signature is
defined as follows. Validity is a relationship between a
message, a signature, and a stated value for the root. (The
value for the root acts analogously to a public key.) To be
valid, the nodes in the signature must first be the siblings of
a path to root for some particular leaf node. If so, then these
sibling nodes define a signature-derived root value. The
signature is valid if the signature-derived root value is the
same as the stated value for the root.

[0086] FIG. 2. Exemplary Illustration of an Pruned Sig-
nature Tree

[0087] FIG. 2 shows a pruned signature tree 200 contain-
ing only the nodes relevant for an individual combined
signature on the message corresponding to leaf node 111.
The branch from leaf node 111 to the combined tree root 171
is shown as a signature branch 206. The branch to root of the
hash tree consists, in addition to leaf node 111, of parent
nodes 121, 131, and 141, root node 151, and padding node
161. Note that the branch to the root of the combined
signature tree contains two more nodes than the branch to
the root of the hash tree. A sibling set 207 of branch 206
consists of leaf nodes 112 and 132 and parent nodes 120 and
140.

[0088] The data for an individual combined signature on
message for leaf node 111 consists of the values of sibling
hash tree nodes 112, 120, 132 and 140, padding node 161,
and signature node 171. These values are all that are
necessary to verify a combined signature on message 111
against some public key.

[0089] Component Parts of an Individual Combined Sig-
nature

[0090] The component parts of an individual combined
signature are a combination of parts of a hash tree signature
and parts of a regular private key signature. A preferred
embodiment of an individual combined signature consists of
(1) siblings of the branch to the hash tree root on the
combined signature tree, both their values and their relative
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positions to the branch to root, (2) a public key signature at
the top of the tree, and (3) a size of the tree.

[0091] FIG. 3. Exemplary Illustration of an Individual
Combined Signature

[0092] FIG. 3 shows an illustrative individual combined
signature for the message of leaf node 111. In the preferred
embodiment of FIG. 3, the representation convention is
XML tags. The labeling convention of FIG. 3 uses reference
numerals ending in a final “T” for entire XML tags and
reference numerals without such a “T” for elements within
a tag. It will be appreciated that the line breaks and white
space in the formatting of the illustrative example are not
essential to an embodiment of the present invention, but
merely a convenience for discretely labeling its parts. Simi-
larly, XML is not the only convention in which to define a
signature format; other conventions such as ASN.1 or even
ad hoc definitions suffice.

[0093] Certain attributes of the tags are hash values of
nodes in a tree. These values are shown elided in the
drawing, instead of having them clutter the diagram with
meaningless (and unverifiable) base-64 values.

[0094] An individual combined signature 300T is a sig-
nature tag pair, consisting of a signature start tag 371T and
a signature end tag 3797, enclosing a sibling tags section
307T. Section 307T consists of left and right sibling tags
312T, 320T, 332T, and 340T. Note that while a combined
signature tree is drawn with leaf nodes at the bottom and root
at the top, the convention of the combined signature is
opposite, with the sibling of the message coming first and
thus appearing at the top. Either order would suffice; the
illustrated order is more convenient.

[0095] Tag 312T is the representation of node 112 as the
right sibling of node 111, the leaf node whose individual
combined signature this is. Tag 312T has tag name “right”;
a value attribute 312 contains the value of node 112.
Likewise, tag 320T is the representation of node 120 as the
left sibling of node 121, with value in an attribute 320.
Similarly, tag 332T (with an attribute 332) represents node
132 and tag 340T (with an attribute 340) represents node
140. Note that the four nodes of sibling set 207 are exactly
those of sibling tags section 307T.

[0096] Signature start tag 371T contain the value of sig-
nature node 171 in an attribute 371. Tag 371T also contains
an attribute 372 for hash tree root padding and an attribute
373 for the size of the tree. The complete value of the
signature includes not only the attribute 371 value of the
signature but also the attribute 372 hash tree root padding.

[0097] Validity of an Individual Combined Signature

[0098] WValidity of an individual combined signature is a
relationship between a message, a signature, and a public
key. The idea is to reconstruct a pruned signature tree
presumably from which an individual combined signature
was taken. The last step in reconstruction is to verify that the
signature node contains a signature on the padding node.

[0099] FIG. 4. Exemplary Illustration of a Verification
Tree
[0100] FIG. 4 shows a verification tree 400, which illus-

trates a method of signature verification. Tree 400 is a data
structure built from individual combined signature 300T.
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For the purposes of FIG. 4, we will take individual com-
bined signature 300T as an input rather than an output. That
is, tree 400 is defined relative to a signature and a public key,
rather than to a message stream and a private key. As a
consequence, although tree 400 is similar to pruned signa-
ture tree 200, tree 400 is not the same as tree 200, nor is it
a sub-tree of combined signature tree 100. In other words, a
verification tree is defined from a signature as presented,
which may not be the same as a signature as generated.

[0101] The node values of tree 400 are defined in two
sections. The first section is simply a single node, a signature
node 471. The value of signature node 471 is defined as the
signature value presented in attribute 371. The second
section is the remainder of the tree. A candidate signature
edge 401 connects the two parts of a valid verification tree.

[0102] The construction of the second section begins with
a message node 411, whose value is the value of a message
given to verify. The value of a sibling node 412 is the value
from attribute 312. The value of a branch node 421 is the
properly hashed-together value of node 411 as its left child
and node 412 as its right child. Signature tag 312T indicates
that node 412 is a right child of its parent.

[0103] Working the way up the chain, a sibling node 420
is taken from the next sibling tag 320T, a left sibling. The
value of a branch node 431 is the hashed-together value of
its left child 420, which is taken from attribute 320, and its
right child 421, whose value is defined above.

[0104] Similarly, the value of a branch node 441 is the
hash of its right child node 431, defined above, and its left
child, a sibling node 432, whose position is taken from third
sibling tag 332T and its value taken from attribute 332. The
value of hash tree root node 451 is the hash of its right child,
a sibling node 440 (position from node 340T, value from
attribute 340), and its left child 441 (defined above).

[0105] Finally, the value of padding node 461 is the
concatenation of the pad value from attribute 372 and the
value of hash tree root node 451. Candidate signature edge
401 connects padding node 461 and signature node 471.
Edge 401 represents that the verification predicate is applied
to the values of the two nodes it connects to determine
whether there is a valid edge there. Only if the signature
predicate on edge 401 verifies can individual combined
signature 300T be valid.

[0106] Part 2—Specifications for a Preferred Embodi-
ment, FIGS. 5-14

[0107] Part 2 of this description has ten Figures of math-
ematical notation in three sections. After introducing some
notation, the first section contains three figures discussing an
improved hash tree technique. The improvement is in the
details, which are completely specified. The next three
figures show detailed specifications for a combined signa-
ture tree. The third section describes individual signatures in
the last three figures of this part.

[0108]

[0109] In order to make the disclosure of the present
invention as complete and concrete as possible, FIG. §
contains notation that will be used to specify data structure
and operations throughout this patent.

FIG. 5. Definitions and Notation
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[0110] Equation 5.1 designates the notation for N, the
natural numbers.

[0111] Equations 5.2 through 5.5 contain notation about a
cryptographic hash function. Equation 5.2 designates L as
the output length of a cryptographic hash function. Equation
5.3 defines a hash result space H as the bit strings of length
L. Equation 5.4 designates the notation for the set of all bits
strings, of any length. Equation 5.5 is a type specification for
the cryptographic hash function used; it takes arbitrary
length inputs and has a fixed length output. (A type speci-
fication of a function is a definition of its domain and range.)

[0112] The hash function and the security parameter L are
specified together as a rule. A preferred embodiment uses
SHA-1 as its hash function, where L=160. The hash function
F( ) operates on bit strings of arbitrary length and returns
results of fixed sizes. An obvious variation of a preferred
embodiment is to substitute this hash function.

[0113] Equations 5.6 through 5.11 contain notation about
a public key signature scheme. Equation 5.6 designates P as
input and output lengths of the public key operations.
Equation 5.7 defines J as an input and output space. Equation
5.8 designates K as a space of private keys of a signature
scheme. Equation 5.9 designates K, as the corresponding
space of public keys. Equation 5.10 is a type specification
for a signing operation Sg. The signature operation takes as
input a private key and a message value and outputs a
signature value. Equation 5.11 is a type specification for a
verification predicate Vigg. The verification predicate takes
as input a public key, a signature value, and a message value;
its result is whether the signature is a valid on the message
with the given public key.

[0114] The cryptographic signing operation Si, and veri-
fication predicate Vg are a matched pair for a given public
key signature system. A preferred embodiment uses the
ElGamal public key signature system. As of the writing of
this disclosure, a preferred embodiment uses M=1024. The
parameter M may be increased over time, as necessary, for
the security of the system. In the sequel, we will suppose that
public key d is derived from private key e according to the
key generation process associated with the public key sig-
nature system.

[0115] Cryptographic signing operation Sgg may require a
source of random bits in order to make a signature. The
ElGamal signature, amongst others, has this property. As
such, the operation Spg is non-deterministic. The verifica-
tion function Vg, however, verifies any output of S as a
valid signature. In the foregoing, a signature operation will
be presumed to supply its own source of random bits, which
will not be separately illustrated. An obvious variation of a
preferred embodiment is to substitute the cryptographic
signature scheme. Not all signature schemes require random
bits. The convention that a signature operation will supply
its own source of random bits if needed allows a substitution
of signature scheme to be more readily grasped.

[0116] Equations 5.12 through 5.15 contain notation about
input messages. Equation 5.12 designates H* as the set of
sequences of values in H. Sequences in H* always have at
least one element in the sequence. Equation 5.13 is a
designation of #, the length operator. Equation 5.14 desig-
nates the notation M as a particular sequence of messages.
We will use M to denote the input sequence for the con-
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struction of a hash tree or a combined signature tree.
Equation 5.15 designates n to denote the number of leaves
in a hash tree or combined signature tree under consider-
ation.

[0117] Equation 5.16 designates notation for a base-10
conversion function. Equation 5.17 designates notation for a
base-64 conversion function. Equation 5.18 is a name for the
ASCII double-quote character. All of these items are con-
ventional practice.

[0118] Equation 5.19 designates the use of the + operator
as representing string concatenation as an operator between
bit strings, in addition to representing regular addition.

[0119] Equation 5.20 designates B as the set of true/false
values.

[0120] Ordered Trees

[0121] A preferred embodiment of a combined digital
signature uses a family of hash trees that augment the
Merkle hash tree construction. In the Merkle hash tree
patent, formulas were shown only for the class of complete
binary trees (size a power of two), but that patent mentions
at the end that other kinds of tree construction would also
work. The class of trees that the Merkle construction works
on are the class of ordered trees.

[0122] We must first define an ordered tree. A tree is a
connected, directed acyclic graph. It has, therefore, a unique
root node that every path leads to. An ordered tree is a tree
with an ordering on the leaf nodes and a special planarity
property: if the leaf nodes are arranged on the x-axis of the
plane, then the graph has a non-crossing embedding in the
upper half-plane. (This is a fancy way of stating that you can
lay out an ordered tree in the conventional way, with its
leaves in increasing order at the bottom of a diagram.) In
general, any tree has an ordering that supports the Merkle
hash tree construction. The principle for constructing a
Merkle hash tree on an arbitrary tree is simple: the value of
a parent node is equal the result of a cryptographic hash
function applied to the concatenation of its children. If the
order of concatenation was not fixed in advance, computing
such a concatenation determines an order for the tree. In the
following, we will consider any Merkle hash tree to have
operated on an ordered tree, since the computation of such
a tree generates an ordering if there was not one before.

[0123] One notable property of ordered trees is useful for
describing a preferred embodiment of a combined signature
tree. Every parent in any directed acyclic graph has a
collection of leaf nodes as its eventual descendants. In an
ordered tree, this collection of leaves is a contiguous
sequence of nodes. By convention, we number the leaf
nodes with nonnegative indices beginning at zero. Thus the
position of every node in an ordered tree has a unique
representation as the first and last indices of its set of
contiguous leaf progeny. This is a consequence of the
non-crossing embedding that defines an ordered tree. In
other words, each node in the ordered tree has a position that
is very easy to encode; it’s simply a pair of numbers. Trees
that are not ordered trees still have ways of specifying the
position of its nodes, although they are not as simple as for
ordered trees. A preferred embodiment of a combined digital
signature uses this property of ordered trees to specify its
node positions. Indeed, the tree illustrated in FIG. 1 is an
ordered tree and the nodes are labeled with this convention.
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[0124] The position pair convention for ordered trees has
two notable invariants. In a hash tree of n leaves, the position
of the root is always <0,n-1>, no matter what the tree shape,
because the root must always be an interval with n elements,
beginning with 0. The position of a leaf is always of the form
<i,i>. Because the leaf is a sub-tree of a single element, it
must be represented by an interval of length 1.

[0125] FIG. 6. Specification and Properties of Left-Bal-
anced Binary Trees

[0126] FIG. 6 defines a particular class of ordered trees
that called left-balanced binary trees, or LBB-trees for short.
There is a single LBB-tree shape for every size of tree. Each
such tree is an ordered tree, so we can specify all the nodes
of the tree as a set of ordered pairs T,. Because any ordered
tree has the property that siblings form contiguous intervals,
specifying all nodes in a tree also defines every parent and
child relationship within the tree. The definition of T, thus
also defines the structure of tree.

[0127] Equation 6.1 is a type specification for T as a set
of ordered pairs. Each member of T, corresponds to a node
in the tree.

[0128] Equation 6.2 is a definition of K( ), a function gives
the number of bits that a pair of numbers differ at the end
after a shared initial substring (if i<j). When the context is
clear, we will say the k-value of a node <ijj> is the value
K<iyj>.

[0129] Equation 6.3 is a definition for T . The first predi-
cate states that the indices of a node in the tree must denote
a sub-interval of the total interval [0,n-1]. The second
predicate says that 2 to the k-value divides the first index,
that is, the first index must end in k zero-bits. The third
predicate states that the second index must end in k one-bits
or be equal to the maximum index n-1.

[0130] While this is not the place for exhaustive proofs, an
exposition of a few of the properties of these LBB-trees is
in order. An LBB-tree is a binary tree, with each non-leaf
node having exactly two children. An LBB-tree is ordered,
so we can call these children left and right without confu-
sion. (We use the zero-on-the-left, increasing-to-the-right
convention illustrated in FIG. 1.)

[0131] The leaves, with node indices equal to each other,
have k-values of zero. Parent nodes have k-values greater
than their children. The root node has k-value equal to the bit
length of n-1. The longest branch to root has K<0,n—1>+1
nodes, including leaf and root nodes. An LBB-tree has the
minimum tree depth possible for any binary ordered tree of
its size, so the tree is “balanced” in the sense that there are
no long paths to root.

[0132] The tree is left-balanced because longer paths to
root are all to the left. Indeed, an LBB-tree has a monoto-
nicity property; the lengths of branches to root never
increase going from left to right. Precisely, if a<b, then the
branch from leaf node <a,a> to root is at least as long as the
branch from leaf node <b,b> to root. The length of the
branch from leaf to root achieves is maximum value at the
first leaf node <0,0>.

[0133] Equation 6.4 defines a subset of the tree T,*, which
is the set of nodes with children; this set excludes the leaf
nodes. Equation 6.5 defines a subset T, which is the set of
nodes with parents; this set excludes the root node.

Dec. 5, 2002

[0134] Equation 6.6 is a type specification and definition
of navigation function Left,( ) Equation 6.7 is a type
specification and definition of navigation function Right, ().
Note the interval-splitting property of the children. First
indices of a parent and a left child agree; second indices of
a parent and a right child agree. A left child interval is
contiguous with a right child interval; together they com-
prise all the parent interval.

[0135] Equation 6.8 is a type specification and definition
of a leaf branch length function L( ). The parameters to 1( )
are a tree size and a leaf index. The value of L( )is equal to
the length of the branch from leaf to root, counting edges (in
other words, one less than the value of counting nodes). 1)
is defined as a particular value of L'( ) with the same initial
parameters, explained below.

[0136] Equation 6.9 is a type specification and definition
of a general leaf path length function L'( ). L'( ) takes the
same parameters as L( ), but adds an additional node
parameter. L'( ) returns the distance from a leaf node (the
second parameter) to a branch node (the third parameter)
along the branch to root. If the branch node is not on this
branch, the function is not defined. It is straightforward to
define L'( ) recursively, since one can simply add one for
every recursion taken going down the branch. Now we can
explain the definition of L( ). The value L( )is a special value
of L'() for the length of the path to the root node, which is
a part of every branch.

[0137] Equation 6.10 is a type specification and definition
of a predicate ordinary,( ). An ordinary node, roughly
speaking, is a node that doesn’t have anything to do with the
exceptional behavior found at the rightmost branch from leaf
node <n-1,n-1> to root node <0,n-1>. Some nodes on
rightmost branches are ordinary. In particular, when n is a
power of two, all the nodes on the branch are ordinary. Thus
an LBB-tree whose size is a power of two is composed
entirely of ordinary nodes.

[0138] Equation 6.11 is a formal definition of a stability
property of ordinary nodes. Every ordinary node in a tree is
also an ordinary node in every larger tree. This property
boosts performance of signature-making by allowing incre-
mental computation. Creating an ordinary node can be done
as soon as possible, since it will not change position there-
after. The non-ordinary nodes are at most log, n in number,
so it is possible to construct most of the final tree as
messages arrive, without knowing the eventual size of the
tree in advance. One of the reasons to select LBB-tress, as
opposed to other trees, is exactly for this stability property.

[0139] Tree Extensions

[0140] At this point it is worthwhile to explain in greater
detail the object of modifying the Merkle hash tree. The
original Merkle hash tree exhibits a security hazard in
certain modes of use. Suppose that a signature-maker is to
sign messages presented by others (say, a signature server
making signatures for a number of web servers). Further
suppose that a presenter computes a hash tree in advance and
transmits the concatenation of the two children of its root to
the maker. The maker will happily hash this concatenation
and incorporate it into the maker’s own tree. The presenter
can extend the signature on the message with nodes from
their own private tree. The presenter has converted a single
signature into more than one signature, whereas the maker
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would only suppose a single signature to have been made.
This attack is called a tree extension. It breaks the principle
that a maker should always know exactly what they have
signed.

[0141] The tree extension attack is possible with the
Merkle hash tree for two reasons. First, the structure of the
signature does not indicate anything about the tree structure
from which the signature was extracted. Second, the hash
function F( ) is known widely, and an opponent is able to
construct a tree extension in advance. One can address these
problems either by adding information about the tree struc-
ture or by manipulating the hash functions, or both. There
are several ways to address these issues. For example, one
can add information to the signature format about the overall
tree structure. This is the technique demonstrated in a
preferred embodiment. Other techniques are described
below as embodiments and minor variations.

[0142] Note, however, that none of these techniques to
prevent tree extensions are necessary for proper functioning
of the combined signature in general. Only in certain situ-
ations do tree extensions present an actual security risk. In
other situations, protection against tree extension in unnec-
essary, but the advantages of the present invention unrelated
to tree extension still remain useful.

[0143] Position-Dependent Hash Trees

[0144] A preferred embodiment of the present invention
augments the basic construction of a hash tree by using a
position-dependent hash function. In the Merkle construc-
tion, the hash function is the same for every position in the
ordered tree. A position-dependent hash function takes as
arguments, in addition to the values of the child nodes, the
position of the node which is being computed. With posi-
tion-dependent hash functions, one places position informa-
tion into the hash tree, thus enabling detection of tree
extension attacks.

[0145] FIG. 7. Specification of Node Values for a Hash
Tree

[0146] FIG. 7 illustrates a specification for a position-
dependent hash tree of size n as used in a preferred embodi-
ment. A hash tree is a combination of a tree structure and a
value for each node in the tree. While FIG. 6 specifies the
structure of LBB-trees, it does not specify the values asso-
ciated with any of the nodes. FIG. 6 shows only the structure
of an LBB-tree, that is, the names of the nodes and the
connectivity between them. Notably absent from FIG. 6 are
the messages upon which a signature might be made. FIG.
7 incorporates a message sequence as values assigned to the
leaves of a hash tree.

[0147] Equation 7.1 is a definition of a set of “valued
trees” VT,. A valued tree is a “value function” from T, into
a value range, in this case H. A hash tree is a particular kind
of valued tree whose values are consistent with the hash tree
construction principle.

[0148] Equation 7.2 is a definition of a well-constructed
hash tree N. A hash tree is well-constructed if the value of
every parent node is the hash of its two child nodes. This
predicate allows a description the structure of a hash tree
constructor to be separate from a description of its operation.
The structure of a device states that certain signals have
designated properties; an algorithm states how to compute
those signals.
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[0149] Equation 7.3 is a type specification and definition
for NodeHash,( ), a hash function for a hash tree. Node-
Hash,( ) takes as inputs a tree position, the value of a left
child, and the value of a right child; its result is a hash value.
NodeHash,( ) is thus a position-dependent hash function,
because its result depends upon position. The value of
NodeHash,( ) is the result of a standard hash function F( )
and “formatting function” NodeFormat,( ), defined below.

[0150] Equation 7.4 is a type specification of a “formatting
function” NodeFormat,( ). The formatting function takes the
same inputs as NodeHash, ( ); it results in a bit string suitable
for hashing. A formatting function is a functional specifica-
tion for an algorithm used to encode node positions and child
values before hashing. A preferred embodiment uses a
definition of NodeHash,( ) in FIG. 8, discussed below.

[0151] Equation 7.5 is a type specification for valued tree
Ny, a value function from the nodes of tree T, to value space
H. This function depends upon an input sequence of mes-
sages M. To each possible sequence of messages there is a
defined value function, which is a way of saying that every
sequence of messages generates a hash tree. This separation
of structure and value allows a more clear exposition of
possible variations of the present invention.

[0152] Equation 7.6 defines value function Ng,( ) recur-
sively down from the root to the leaves. The value of each
parent node depends upon its own position and the values of
its two children. The recursion bottoms out at the leaves. The
value of a leaf node is simply the value of the corresponding
message in the message sequence that defines the value
function. The reader can check that Ny, is a well-constructed
hash tree.

[0153] Equation 7.7 is a formal definition of a stability
property for the value function on LBB-trees. The property
says that if a node is ordinary in a tree constructed from
some message sequence, that the value of the node does not
change in a larger tree constructed from an extension of that
sequence. In other words, the stability property for the
existence of nodes in an LBB-tree also carries over into the
value function. Therefore, not only is it possible to construct
a tree incrementally, it is also possible to compute the values
of its nodes incrementally.

[0154] Equation 7.8 defines a predicate that characterizes
a valid hash tree for a message sequence M. A given hash
tree is valid for a message sequence if it is equal to the hash
tree generated from that message sequence. This definition
illustrates the principle (which will be used elsewhere) that
definition of the value of a tree (hash tree or combined
signature tree) is not the same as a definition of its validity.
The distinction between N and Ny, in the definition is that
N is given by the values of all its nodes and Ny, on the other
hand, is given by construction from a message sequence. In
other words, a hash tree constructor operates correctly when
its output (a hash tree given by its set of values) is equal to
the definition of a hash tree generated from its input.

[0155] Because the value of a node depends upon its
position, the hash tree of a combined signature is different
than that of the Merkle hash tree. The dependence of value
on position is a central technique for protection against tree
extension. Position-dependent hash trees can prevent tree
extensions, but the Merkle hash tree cannot. Use of a
formatting function simplifies the specification and security



US 2002/0184504 A1l

analysis of position-dependent hash functions, by allowing
well-known cryptographic hash functions to be used as
primitives. It will be apparent, though, that formatting
functions are not the only way of obtaining position-depen-
dent hash functions.

[0156] A preferred embodiment uses the LBB-trees of
FIG. 6, but it is apparent that the definition of the value
function Ny is also valid for any class of binary trees with
a defined node-set T, and navigation functions Left, ( ) and
Right, (). Likewise, a preferred embodiment uses the for-
matting function definitions of FIG. 8, yet the method for
specifying node values is also valid for other formatting
functions.

[0157] FIG. 8. Specification of Position-Dependent For-
matting Functions

[0158] FIG. 8 shows a specification for a position-depen-
dent hash function, NodeFormat ( ), used in a preferred
embodiment. This hash function uses XML formatting con-
ventions to define root and parent data formats. Each format
result is a single XML tag containing a node position and the
values of its two children. It will be appreciated that XML
is not necessary here; other formatting conventions would
work just as well.

[0159] Equation 8.1 is a definition of NodeFormat ( ).
This formatting function uses two different formats to dis-
tinguish between the root node and non-root parent nodes.
This is how this formatting function uses its position depen-
dence. It will be appreciated that while the use of position
dependence is subtle, the definition of NodeFormat,( )
would not be possible outside of the context of position-
dependent hash functions.

[0160] Equations 8.2-3 both use ASCII string constants; in
both equations the operator+represents string concatenation.
Equation 8.5 is a definition of RootFormat( ), a formatting
function for root nodes. The XML tag name identifies it as
a root, and the result contains a representation of the size of
the tree. Equation 8.6 is a definition of ParentFormat( ), a
formatting function for non-root parent nodes. Each format-
ting functions takes as parameters the values of a node’s two
children.

[0161] Prevention Against Tree Extensions

[0162] The particular formatting functions of a preferred
embodiment protect against tree extension by validating the
signature path against valid LBB-tree shapes. The signature
information contains a set of sibling nodes, specified as right
or left siblings. The signature also contains the size of the
tree. These sibling designations uniquely identify a path to
root and thereby also identify the message number. This
identification is unique because the tree is known to be an
LBB-tree of the given size. It is straightforward to tell
whether a designated path is part of the given LBB-tree. If
the path is not a valid path in the LBB-tree, then the
signature is not valid.

[0163] It will be appreciated that any class of ordered trees
supports this approach against tree extension. So long as
there is a unique member of such a class for any given size
of tree, it is possible to include in the definition of signature
validity a test between the branch-as-computed and a
branch-as-is-possible. If the computed branch is impossible,
the signature is invalid.
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[0164] FIG. 9. Specification of a Combined Signature
Tree Structure

[0165] FIG. 9 shows a specification for the nodes and
structure of a combined signature tree. Analogously to the
description of a hash tree, the structure definitions are in one
figure (FIG. 9) and the value definitions are in another (FIG.
10 below).

[0166] Equation 9.1 is a definition for a node set U, of
nodes in the (unvalued) base tree of a combined signature
tree of size n. The node set U_ is the node set of an LBB-tree
of size n together with a padding node P and a signature node
S.

[0167] Equation 9.2 is a designation of R as the hash tree
root node of the base tree of a combined signature tree.

[0168] Equation 9.3 is the remainder of the structure
definition not induced from T,. The parent of the root node
the hash is the padding node. The parent of the padding node
is the signature node. The signature node has no parent.

[0169] FIG. 10. Specification of Node Values of a Com-
bined Signature Tree

[0170] FIG. 10 shows a definition of a class of combined
signature trees, a definition of a particular combined signa-
ture tree that is generated from parameters, and a definition
of signature tree validity for a message sequence and a
public key.

[0171] Equation 10.1 is a definition of a set of valued trees
VU,_, a set of value functions from base trees of a combined
signature tree into a value range, in this case 2*. The set VU
of valued trees is a type specification for a combined
signature tree. A combined signature tree is valued tree in
VU_with certain properties.

[0172] Equation 10.2 is a definition of a well-constructed
combined signature tree. First, a combined signature tree
must contain a well-constructed hash tree. Since N is a value
function on U,, then the restriction of N to T, is a potential
hash tree. Second, the value of the padding node must be
equal to some padding concatenated with the value of the
root. Third, there must be some public key such that the
signature node is a signature on the padding node. Note that
this definition of a combined signature tree does not mention
a particular message sequence nor public key. This is a
definition of the class of all combined signature trees, not a
definition of whether a signature tree is valid for some
particular message sequence and public key.

[0173] Equation 10.3 is a type specification for a com-
bined signature tree N, y,;,. This combined signature tree
depends on three subscripted values. e is a private key for
making a cryptographic signature, M is a sequence of input
messages, and z is a padding value.

[0174] Equation 10.4 is a definition for combined signa-
ture tree N, y;,. Similarly as with the hash tree Ny, this
value function is defined recursively down from the top of
the tree. The value of the signature node is the result of a
signature operation of the public key scheme applied with
the private key and the value of the padding node. The value
of the padding node is the result of a formatting function on
padding z of the value function and the value of the hash tree
root node. The value of the hash tree nodes, including that
of its root, is taken from hash tree Ny;.
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[0175] Equation 10.5 is a definition of validity of a com-
bined signature tree N for a public key d and a message
sequence M. A combined signature tree is valid for a
particular message sequence and public key if three condi-
tions hold. First, N must be a well-constructed combined
signature tree. Second, the signature must verify not just
with any public key, but with d. Third, the value of the root
node must be equal to that generated by the given message
sequence M.

[0176] The definition of combined signature tree validity
illustrate an important principle in the specification of a
preferred embodiment. The definition of a function or predi-
cate should not be taken immediately as an indicator that a
preferred embodiment will contain an algorithm that com-
putes that function. While some of the functions have such
corresponding value-computing algorithms in a preferred
embodiment, others do not. The combined signature tree
validity predicate defines the correctness of the result of an
algorithm, not how one might compute such a result.

[0177] With this point in mind, the validity predicate of
Equation 10.5 is used in defining correct operation of a
device that makes signatures. Note that although a private
key is required to construct a valid combined signature tree,
no private key appears in the definition of validity-only a
public key. On the other hand, no public key is used in the
construction of a combined signature tree.

[0178] FIG. 11. Specification of Padding and Stripping
Functions

[0179] FIG. 11 shows type specifications and definitions
for padding and stripping functions used in FIG. 10 and
elsewhere.

[0180] Equation 11.1 is a type specification for a padding
function PadFormat( ), which is used to pad out the value of
the hash tree root to the size required for a public key
signature operation. Since a hash value is shorter than an
input to a signature operation, there is a bit string input to
make up the difference. This bit string is P-L bits long, the
difference in lengths.

[0181] Equation 11.2 is a definition for PadFormat( ). The
inputs are bit strings. The operator+is string concatenation.

[0182] Equation 11.3 is a type specification for PadStrip(),
which ignores the irrelevant bits from a result of a public key
signature verification. This function is used to define com-
bined tree signature validity .

[0183] Equation 11.4 is a definition for PadStrip( ). The
input is a bit string. The square bracket notation for the result
is that of array subsequence. The result is the extraction of
bits 0 through [-1, inclusive, that is, the first L bits.

[0184] Equation 11.5 is a type specification for Padding( ),
which extracts the padding bits from a padding node value.
Equation 11.6 is a definition of Padding( ), which extracts
the last P-L bits from its input.

[0185] Equation 11.7 is a characterization of the relation-
ship between PadFormat( ) and PadStrip( ). It should be
apparent that PadStrip( ) is the inverse of the restriction of
PadFormat( ) to its first parameter (a hash value). Similarly,
Equation 11.8 is a characterization of the relationship
between PadFormat( ) and Padding( ).
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[0186] These two inverse relationships characterize a class
of variations to a preferred embodiment. A set of padding
functions that meets the type specifications and satisfies the
inversion relationships can plug into the rest of the formulas
without modification. Other padding techniques, however,
are possible with more extensive modification to other parts
of the specification. These variations would add little clarity
to the exposition and are not illustrated.

[0187] FIG. 12. Specification of a Sibling Sequence for an
Individual Signature

[0188] FIG. 12 defines a branch to root and a sibling
sequence for a message in a hash tree of size n. These
definitions are preparatory to defining an extracted indi-
vidual combined signature.

[0189] Equation 12.1 designates L as the length of a
sibling sequence of leaf node <i,i>. Equation 12.1 also
designates k and i as sequence parameters. K is a sequence
index; i is an index for a message whose extracted signature
is being defined.

[0190] Equation 12.2 is a type specification for branch
nodes. Equation 12.3 is a type specification for sibling
nodes. Equation 12.4 is a type specification for sibling
position indicators. Note that the branch nodes are defined
through L+1, but the sibling nodes and positions are only
defined through L. This is because the root has no sibling.

[0191] Equation 12.5 is a definition of B, , ; ,; as the root
node of the hash tree. The pruned subtree is defined from the
root downward.

[0192] Equation 12.6 defines side, , , as “left” if the index
t is in the right child of branch node above and as “right”
otherwise. Left and right here are position of the sibling with
respect to the branch. This is the convention as is used in
FIG. 2. Equation 12.7 defines the sibling node S, , , in the
obvious way: as the left child of the parent if on the left side,
and as the right child if on the right. Equation 12.8 defines
the branch node B, ;. as the other child node. Note that the
index i is always in the branch, not in the sibling.

[0193] As a subtree, the values of the nodes of this subtree
are induced by their inclusion in a larger hash tree. Hence the
definitions in FIG. 12 of a subtree and a sibling sequence are
structural. Values for these nodes do not change during
pruning, so no separate definition of a node value function
is required.

[0194] FIG. 13. Representation of an Individual Com-
bined Signature

[0195] FIG. 13 shows representation functions for an
individual combined signature. The formatting convention
here is XML.

[0196] Equation 13.1 is a type specification for Extract-
edSignature( ), a function which defines an extracted, indi-
vidual combined signature on a single message out of a
sequence. ExtractedSignature( ) takes all the arguments to
form a combined tree signature and adds an index for the
specific message to extract a signature for.

[0197] Equation 13.2 is a type specification for Sibling-
Seq(), a function which represents a sibling sequence within
an extracted, individual combined signature. The first
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parameter is a sibling sequence. The second parameter is a
leaf node index. The third parameter is a starting index in the
branch.

[0198] Equation 133 is a definition  of
ExtractedSignature( ). The result of ExtractedSignature( ) is
a sibling sequence enclosed with a signature tag pair. The
parameters to SignTagStart( ) are a signature value, padding,
and a tree size, each of which become attribute values. The
parameters to SiblingSeq( ) are a message sequence, a
particular message index, and zero. The third parameter of
zero means that the SiblingSeq( ) result incorporates the
entire sibling sequence.

[0199] Equation 13.4 is a definition of SiblingSeq( ).
SiblingSeq( ) is defined recursively, as the concatenation of
a designated sibling tag and the sibling sequence that starts
one index higher. The parameters to SibTag( ) are (1) the
position indicator and (2) the value, both of the siblings at
height k along the branch from leaf t in the tree generated by
message sequence M. When the height parameter k is equal
to the length of the branch, the result is the empty string; all
nodes have been formatted; the recursion stops and the
sequence ends.

[0200] Equation 13.5 is a definition of SignTagStart( ),
which presents a signature value, a pad, and a tree size in a
straightforward XML start tag structure.

[0201] Equation 13.6 is a definition of SignTagEnd( ),
which is a constant function with no domain. The result of
the function is an XML end tag.

[0202] Equation 13.7 is a definition of SibTag( ), which
presents the position indicator and value of a sibling. The tag
name is the same as the position indicator, either “left” or
“right”.

[0203] Parsing and Reconstruction of an Individual Com-
bined Signature

[0204] The results of ExtractedSignature( ) are self-con-
tained signatures that only require a public key and an
original message for verification. Individual signatures are
separate from each other and can be transmitted to another
party individually. Therefore, validity of an individual sig-
nature is defined in reference to the data contained in an
individual signature, not in the message sequence that gen-
erated a combined signature tree. This is directly analogous
to the nodes of the verification tree of FIG. 4 having
different reference numerals than those of FIG. 2.

[0205] The validity of an individual combined signature
depends upon a certain mathematical consistency between
its node values, its position indicators, and its tree size. The
presentation of a signature is in textual form, however.
Strictly speaking, the validity of an individual signature
should be specified as relationships about the textual content
of the presentation. One would define a formal language for
well-formed extracted signatures. The specification of valid-
ity would include the predicate that the signature was
well-formed and that data structures were extracted faith-
fully from it.

[0206] Parsing technology, though, is well-understood and
a full mathematical treatment would add no clarity to a
description of a preferred embodiment. Therefore, we will
compact the specification for validity concerning parsing
and interpretation into data structures into the simple natu-
ral-language predicate “the signature is well-formed.”
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[0207] FIG. 14. Validity of an Extracted Individual Com-
bined Signature

[0208] FIG. 14 is a specification for validity of an
extracted signature.

[0209] Equation 14.1 designates the data extracted from a
well-formed signature. We will define signature validity
with these values, together with the assumption that the
signature is well-formed. sig is the signature value, taken
from attribute “value” of tag “signature”. z is padding bits,
and n is the size of the tree, both values taken from signature
start tag attributes. L is the number of siblings, taken by
counting the number of sibling tags. A sequence of position
indicators are taken from the tag names of the sibling
sequence. A sequence of sibling values is taken from the
attribute “value” of the sibling tags. The indices on the
sibling sequences are taken from first to last appearance,
starting with zero.

[0210] Equation 14.2 is a type specification of XS as a
extracted signature verification parameter. Equation 14.3 is
a definition of the individual values of XS. An XS vector
defines a node value function with which to define validity
of an extracted signature. XS consists of a public key, a
message value, and all the extracted signature values. XS is
a shorthand used in the definition of the node value functions
for the verification trees.

[0211] Equation 14.4 is a specification for the nodes of
W, the base tree of a verification tree of branch length L.
(Note: This is one less that the L used in FIG. 12.) Equation
14.5 is a specification for the edges of Wy, written as values
of a parent navigation function. The nodes in this tree
correspond to a pruned hash tree of a combined signature
tree. Note that there is one more B node than S node. B,
corresponds to the root of a hash tree and has no sibling. The
P node is for a recomputed padding node. The left-right
ordering of this tree is according to the position indicators in
the extracted signature (notation not illustrated).

[0212] Equation 14.6 is a type specification for a verifi-
cation tree Nyg, which as usual, is a value function on an
underlying base tree.

[0213] Equation 14.7 is a definition of Nyg. The value of
the bottom branch node B, is the value of the message
against which validity is being defined. The values of the
sibling nodes are the values taken from the individual
signature. The values of other branch nodes are computed
with position-dependent hash function NodeHash,( ),
defined in Equation 7.3; the position parameter is the value
of Px() (see below) applied to the branch node. The values
of the children are computed recursively; recursion ends at
either a sibling node or at the leaf/message node. Finally, the
value of the padding node is the prospective root value with
the padding.

[0214] Equation 14.8 is a type specification and a defini-
tion for a function Pxg( ), which yields tree positions in T,
for prospective branch nodes of a verification tree. The top
node B; is assumed to be the root. Other nodes are left or
right children of their parents, opposite of the position
indicator, which is the position of the sibling. It is important
to note that Pyg( ) is only defined completely for valid
position sequences. This definition property is a mechanism
for ascertaining branch validity in order to protect against
tree extensions. If the value is defined, then the branch is not
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too long. If the value is a leaf node, it is also not too short,
and thus valid. These two parts of branch integrity appear
below in a definition for validity of extracted signatures.

[0215] Equation 14.9 is a definition of validity for indi-
vidual combined signature. An individual combined signa-
ture is valid if and only if it (1) is well-formed, (2) if the tree
position of the bottom branch node is defined, (3) if the
bottom branch node is a leaf node, and (4) the signature
verifies against the padding node with the public key. This
definition of signature validity is used to define the proper
operation of a device that verifies an individual combined
signature.

[0216] Note that verification requires that the padding be
present in the extracted signature so that a signature verifi-
cation predicate can operate on (presumably) the same
message used to make the signature in the first place. A
minor variant is that if the padding is deterministic, it could
be omitted from the signature format and recalculated during
verification. A somewhat more extensive variation uses
public key signature schemes with message recovery,
described below as a variant embodiment.

[0217] Part 3—Block Diagrams of Devices

[0218] FIG. 15. Diagram for a Device that Makes Com-
bined Digital Signatures

[0219] FIG. 15 shows a block diagram of a device that
makes individual combined digital signatures. This device
has both synchronous (that is, subroutine-like) and asyn-
chronous (that is, server-like) modes of operation.

[0220] Input to the device begins with a message sequence
source 1500. Source 1500 receives messages from external
sender(s), who submit messages for signing. Source 1500
contains an internal queue that can serialize external mes-
sages, that is, put them in a definite order. The output of
source 1500 is a sequence of values in H and is the input to
a hash tree constructor 1503. The output of constructor 1503
is a hash tree signal 1510.

[0221] Signal 1510 is a well-constructed hash tree; that is,
it obeys the predicate about hash tree validity of Equation
7.2. Furthermore, signal 1510 is a valid hash tree for the
message sequence of source 1500, obeying the predicate of
Equation 7.8. Hash tree signal 1510 is one of three inputs to
a root node signer 1504.

[0222] A private key storage 1501 provides a private key
input to signer 1504. A padding source 1502 provide a third
input to signer 1504. In a preferred embodiment, source
1502 is a random number generator.

[0223] The output of signer 1504 is a combined signature
tree signal 1511. Signal 1511 obeys the validity predicate of
Equation 10.5 for the input message sequence, the public
key corresponding to the private key in storage 1501, and the
top node signature value of tree signal 1511.

[0224] Signal 1511 is a first input into a signature extractor
1506. A second input to extractor 1506 is a message selec-
tion 1505. The output of selection 1505 is a signal indicating
a message index into the message sequence from source
1500. The output of extractor 1506 is a signature output
1507. Output 1507 obeys the validity predicate in Equation
14.9 for the input message corresponding to selection 1505
and the public key corresponding to the private key in
storage 1501.
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[0225] Absent from the device is a master controller for
scheduling. In the design of FIG. 15, all coordination is
done locally, so there is no need for a master clock or any
similar control mechanism. While a signature making device
could certainly be created with such a controller, it is not
necessary for the proper functioning of the device.

[0226] FIG. 16. Diagram for an Individual Combined
Signature Verification Device

[0227] FIG. 16 shows a block. diagram of a device that
verifies combined digital signatures.

[0228] Input to the device is a signature source 1600 and
a message source 1601. Signature source 1600 is an input to
a parser 1602, which converts the transmissible form of
source 1600 into an internal representation. Parser 1602 also
ensures that the signature source 1600 is well-formed.

[0229] The output of parser 1602 and message source
1601 are inputs to branch constructor 1604. Constructor
1604 builds a verification hash tree and outputs the value of
its root a public key verifier 1606. Constructor 1604 also
checks to ensure that the branch so constructed is valid for
the LBB-tree of size stated in signature source 1600.

[0230] The output of parser 1602 also contains a signature
value that is an input to verifier 1606. (This signature value
may include padding.) A third input to verifier 1606 comes
from a public key storage 1603. Verifier 1606 computes a
public key wverification predicate on the signature value
output of parser 1602, the root value output of constructor
1604, and the public key from storage 1603. If any input is
“invalid”, as would be the case if the signature were mal-
formed or the branch was illegal, then the output of verifier
1606 is also “invalid”. Otherwise, a verification output 1607
is either “valid” or “invalid”, depending whether the key
verification procedure succeeded or failed.

[0231] Operation—Preferred Embodiment

[0232] FIG.17. Flowchart for Making an Individual Com-
bined Signature

[0233] FIG. 17 shows a flowchart for computing an indi-
vidual combined signature. The flowchart of FIG. 17 is a
description of a synchronous mode of operation, in which an
input of a message sequence and a private key generate a
combined signature tree from which to extract an individual
signature, after which the device stops until restarted. Opera-
tion begins with an LBB-tree construction procedure 1700,
which builds an LBB-tree of size equal to the length of a
message sequence 1701. The constructor computes a tree
according to the specification of an LBB-tree in FIG. 6. A
node set is computed in accordance with Equation 6.3, the
definition of T,. Parent and child relationships follow
according to the properties of an ordered tree.

[0234] After the construction of an LBB-tree, a leaf valu-
ation procedure 1702 computes values of the leaf nodes
according to Equation 7.6, taking message sequence 1701 as
leaf values. Following this, a tree valuation procedure 1704
computes the values of each node of the LBB-tree according
to the specification of FIG. 7, using the position-dependent
formatting functions of FIG. 8. The result of procedure 1704
is a valid position-dependent hash tree computed from
sequence 1701.

[0235] A padding procedure 1706 then creates a padding
node according to FIG. 9 and computes a value for it by
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adding padding bits 1707 to the root of the hash tree
resulting from procedure 1704. This computation is in
accordance with Equation 10.4 and 11.1.

[0236] A signature operation 1708 then creates a signature
node according to FIG. 9 and computes a value for it by
applying a signature operation corresponding to a private
key 1709. This computation is accordance with Equation
10.4. The resulting tree is a valid combined signature tree
according to the characterization of validity of Equation
10.5.

[0237] An extraction procedure 1710 then computes a
sibling sequence corresponding to particular message from
sequence 1701 chosen according to the index of a message
selection 1711. This sibling sequences is in accordance with
the definition of a sibling sequence found in FIG. 12.
Procedure 1710 finally presents an individual combined
signature by outputting it according to specifications found
in FIG. 13. The output individual combined signature is
valid according to the characterization of validity found in
FIG. 14, Equation 14.9.

[0238] Performance of Combined Signatures

[0239] From the operation of FIG. 17 we can consider the
total performance of a combined digital signature device.
From FIG. 15, it is clear that signal 1511 remains constant
when only message selection 1505 changes. Signature
extractor 1506 does no computationally intensive calcula-
tions, so efficient use of the signature making device occurs
when the combined signature tree is computed once and all
relevant signatures are extracted by cycling through valid
message selections. Performance figures, therefore, should
be calculated by considering the signature-making device as
a batch processor.

[0240] A batch of computation consists of (1) a number of
hash function computations for the parent nodes of a hash
tree and (2) a single public key operation for the value of the
root node of a combined signature tree. Signature extraction
is but a small percentage of the total computational load and
will be neglected here.

[0241] For a unit of time, instead of using seconds, we’ll
use the time it takes to calculate the hash value of a node.
We’ll call this one hash unit. At the end we’ll take a ratio of
the combined signature performance to the underlying pub-
lic key performance, so exact time measurements would
drop out anyway. The result we will obtain is a speedup
factor over conventional public key signatures.

[0242] To do the estimate, we need to know how much
time a public key operation takes in hash units. We’ll take
this ratio as 1000:1. In practice the public key operation is
perhaps a little slower, but this will provide us with a
conservatively-estimated speedup factor. The improvement
over current practice is dramatic enough not to require a
particularly precise estimate to demonstrate the speedup.

[0243] Each parent node takes a single hash function
computation. For a combined signature tree of n nodes, there
are n-1 total hash function computations. For simplicity of
the exposition, we’ll add in a gratuitous hash function and
call the number of hash operations n. In addition, there is one
public key signature for all of them. Total time to compute
this tree is n+1000 hash units. The signature time per
message, however, is the one that determines total perfor-
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mance. Signature time per message is 1+1000/n . For large
values of n, then, the signature time per messages in only
slightly larger than one hash unit. Normally, total perfor-
mance is limited by the speed of the public key function.
With a combined signature, total performance is limited by
the speed of the hash function—quite a difference from the
typical practice of cryptographic art.

[0244] The speedup ratio is equal to the time for the
traditional method divided by the time for a single combined
signature. The speedup formula with the current assump-
tions is 1000n/(n+1000). For small n, this speedup is
approximately n. So for n=16, a quite small tree, the speedup
is about 15.75, already more than an order of magnitude
faster. For a medium-sized tree, say n=250, the speedup is
200; for n=4000, the speedup is 800. For large n, the total
throughput speedup approaches its maximum value of 1000,
or the ratio of one public key operation to a single hash
function operations.

[0245] The previous estimate assumes that a single pro-
cessor performs all the computations, so that no processing
is done in parallel. When parallel processing can occur,
speedups greater than those listed are possible.

[0246] FIG. 18. Flowchart for Verifying an Individual
Combined Signature

[0247] FIG. 18 shows a flowchart for verifying an indi-
vidual combined signature. The algorithm returns “valid” or
“invalid” about the relationship between a signature, a
message, and a public key, according to the characterization
of extracted signature validity in Equation 14.9.

[0248] The procedure begins with a parsing procedure
1800, which parses an input of an individual combined
signature 1801. Procedure 1800 detects whether signature
1801 was well-formed, and if it is, then constructs an
internal representation of the data in the signature. Good-
form test 1802 checks whether signature 1801 was well-
formed; if not, signature rejection 1803 returns “invalid”.

[0249] Assuming the signature is well-formed, verifica-
tion subtree construction 1804 creates a tree with a branch
to root and any siblings of the nodes along that branch. Valid
branch test 1806 then checks to see if the branch so
constructed is a legal branch for a tree of the size stated in
the signature. If not, signature rejection 1807 returns
“invalid”.

[0250] Assuming the branch is valid, a root value calcu-
lation 1808 computes the branch of a verification tree, taking
the value of a message 1809 as the value of a bottom branch
node and using the stated sibling values from signature
1801. Calculation 1808 computes the values of the branch
nodes, ending with a root node value.

[0251] A public key verification 1810 adds padding from
signature 1801 to the root node value computed by root
value calculation 1808. Verification 1810 then computes the
value of the verification predicate for a public key 1811
against the padded value and the signature value from
signature 1801. If the predicate is false, then signature
rejection 1813 returns “invalid”. If the predicate is true,
signature acceptance 1814 returns “valid”.
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[0252] FIG. 19. Ilustrative Timing Diagram of Asynchro-
nous Operation

[0253] FIG. 19 shows an exemplary illustration of a
timing diagram of a segment of operation of a signature-
making device operating in its asynchronous mode.

[0254] The timing diagram, overall, is arranged in six row
sections. The first row section illustrates an external sender
of messages and signature requests. Each of the other five
row sections represents a component of a device described
in FIG. 15. Each component has a number of states. The
timing diagram of FIG. 19 shows the states, activations of
the states, and dependencies between them. Operation times
were chosen to illustrate the pipeline behavior. The relative
times of signatures, hashes, and extractions are not to scale.

[0255] The components are numbered according to the
reference numerals that appear in FIG. 15; the name of each
component appears underlined. The other labels in each
component box are names of different states of the compo-
nent. The horizontal dashed lines represent timelines of
activation. A heavy bar designates an active state; a dashed
line represents an inactive state. Each component has only
one state active at a time. A more detailed description of
these states appears below. The vertical and slanted lines
between activation bars represent direct dependencies
between activations; the end of an activation in one com-
ponent triggers another activation, either internally or in a
different component.

[0256] The numbered activations show the activations and
signals relevant to making an individual combined signature
on a first message input 1901. Input 1901 immediately
(indicated by a vertical, non-slanted bar) invokes a queuing
activation 1911 in message source 1500. Since constructor
1503 is idle when the queuing is finished, the end of
activation 1911 immediately invokes a first tree increment
activation 1921. The “constructing” state of constructor
1503 adds all ordinary tree nodes for the new index to its
workspace and computes their values. First tree increment
activation 1921 constructs just the leaf node, since it’s the
first node in an empty workspace.

[0257] Signature computation for message 1901 is
blocked after the end of activation 1921, because root node
signer 1504 is busy with a previous batch of messages (not
shown). Meanwhile, other messages are arriving and being
added to the current tree workspace of constructor 1503. A
tenth message 1902 causes a tenth tree increment activation
1922. Asigning tree activation 1930B ends during activation
1922, sending coordination signal 1930C to constructor
1503, instructing it to finish its processing on its workspace
and to hand it off to signer 1504. Signal 1930C illustrates
that signer 1504 is the bottleneck resource of a signing
device; the goal is to keep signer 1504 in its “signing” state
as much as possible. This goal allows latency through the
device to be kept to a minimum.

[0258] Upon completion of activation 1922, a tree
completion activation 1931A begins. At the end of activation
1922, the current tree workspace of constructor 1503 is
emptied in preparation for a new batch of messages. Acti-
vation 1931 A completes the construction of the hash tree, by
computing all the remaining values of nodes in the tree
(which are exactly the non-ordinary nodes of the tree),
which now has a known size since no more messages will be
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added to it. Activation 1931A then triggers a signing tree
activation 1931B. At the end of activation 1931B, it sends a
signal back as before (not shown) and also signals extractor
1506.

[0259] Extractor 1506 then begins an extraction activation
1941, which extracts a first signature from the completed
combined signature tree and signals output 1507. Output
1507 then begins a sending activation 1951, which transmits
an individual signature back to the original sender of mes-
sage 1901. Meanwhile, extractor 1506 continues through its
loop, extracting signatures for each message in the com-
bined signature tree.

[0260] Latency though a Combined Signature Engine

[0261] The performance speedup of the present invention
over traditional public key signature methods holds no
matter whether the operation is synchronous or asynchro-
nous. Overall, total performance generally governs an
implementation decision for any system heavy with digital
signatures. In certain situations, however, latency through a
device is equally important a design constraint as perfor-
mance, particularly for interactive protocols.

[0262] Inthese situations, it is important to understand the
latency properties of a combined signature device. To esti-
mate latencies, we will use a different unit of time than when
we computed performance speedups. The natural unit of
time is the “signature unit”, that is, the time it takes to
compute a single private key operation. The asynchronous
mode of operation has a free-running private key operation
at its center in signer 1504. Whenever a message comes in,
it is added to whatever workspace is current in constructor
1503. If the message comes into an empty workspace (as is
the case with message 1901), it must wait one signature unit
of time before its workspace enters signer 1504. If the
message happens to be the last message in the workspace
before the public key operation (as with message 1902), the
delay is essentially zero (it’s less than two hash units on
average). Because messages arrive at random times through-
out the cycle of the public key operation, the average time
spent in constructor 1503 is one half of a signature unit. The
delay through signer 1504 is one whole signature unit, plus
a small bit extra for finishing the tree. Ignoring the small
hash function overhead (which changes latencies by only
about 2% even for enormously large trees of size 2'5), the
average latency through a combined signature engine is a
little over one-and-a-half times the latency through a stan-
dard public key operation, and not more than twice that
length of time.

[0263] This average latency is well within the bounds of
suitability for any commercial protocol that would use
digital signatures at all. Considering that current hardware
designs for thousand-bit modular exponentiators are capable
of more than 200 operations per second, latencies through a
signature engine with a signer of this performance would
yield maximum latency of about 10 ms. Even fast user
interfaces can operate with response times of as long as 200
ms for major operations, so latency through a combined
signature device is perfectly acceptable. Even though
latency is slightly worse than existing practice, the differ-
ence is not commensurate with the throughput gain. Total
enhanced performance more than pays off this small latency
penalty.
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[0264] State Machines for Pipeline Components

[0265] FIGS. 20-22 show state machines for the middle
tree components of a signature pipeline: constructor 1503,
singer 1504, and extractor 1506. Source 1500 and output
1507 are simple message queues of typical design, and so
are not shown. The interaction of these state machines
generates activity as illustrated in FIG. 19.

[0266] The state machine notation is UML. The top-level
states match those of the FIG. 19 activation timelines. In
some cases the top level states are compound states with
internal structure. The large black dot in each state machine
represents the state at startup. State transitions with labels
represent event-driven transitions. State transitions without
labels represent automatic transitions that occur automati-
cally without an external trigger. All state transitions are
made as soon as any running action has completed. Anno-
tations of state transitions with square brackets are “guards”;
they represent conditions that must be true before any
transition may be taken.

[0267] FIG. 20. State Machine for a Hash Tree Construc-
tor

[0268] FIG. 20 shows a state machine for constructor
1503. Constructor 1503 can receive a signal “message” from
upstream source 1500; this signal includes a message to be
incorporated into the current workspace and eventually
signed. Constructor 1503 can also receive a signal “ready”
from downstream signer 1504; this signal indicates that
signer 1504 is ready to complete and sign another hash tree.

[0269] An initial state 2000 transitions to a waiting state
2002, which is the quiescent state while waiting for mes-
sages to arrive. An idle state 2001 consists of waiting state
2002 and a sending state 2003, and represents the state
where constructor 1503 is not actively computing hash tree
nodes. If the waiting state receives a “ready” signal from
downstream, a ready transition 2011 fires to enter sending
state 2003.

[0270] Upon receipt of a message from upstream, a mes-
sage transition 2010 fires and enters a constructing state
2004. The entry action of state 2004 computes all new
ordinary nodes after appending the message signal to the
message sequence of the current workspace. If this compu-
tation completes without receiving a “ready” signal from
downstream, an automatic transition 2012 fires and returns
to waiting state 2002. If a ready signal is received during this
computation, the ordinary node computation finishes, after
which a ready transition 2013 fires to enter sending state
2003.

[0271] Sending state 2003 executes entry action “send-
Workspace”. If its workspace is empty, the entry action does
nothing. Otherwise this action takes the current workspace
and sends it downstream with a signal “workspace”. Then it
clears its current workspace and discards the current mes-
sage sequence, so that its workspace is empty. Upon having
an empty workspace, an automatic transition 2012 fires to
enter waiting state 2002.

[0272] FIG. 21. State Machine for a Root Signer

[0273] FIG. 21 shows a state machine for signer 1504.
Signer 1504 can receive a signal “workspace” from
upstream constructor 1503; this signal comes with a work-
space for a hash tree with all ordinary nodes already com-
puted.
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[0274] An initial state 2100 transitions to a waiting state
2102. Upon entry into state 2102, its entry action sends a
ready signal upstream to constructor 1503 to indicate that
the signer is ready for a workspace. An idle state 2101
consists of waiting state 2102 and a sending state 2014, and
represents the state where signer 1504 is not actively com-
puting cryptographic values. Upon receipt of a workspace
signal from upstream, a workspace transition 2110 fires to
enter a completing state 2105. Note that all other transitions
in this state machine are automatic.

[0275] The entry action of completing state 2105 com-
putes any remaining non-ordinary nodes in the workspace.
At end of this action, the root node of the hash tree has been
computed and is ready to sign. State 2105 then automatically
transitions to a signing state 2106. The entry action of state
2106 pads the root value and signs it. Upon completion of
this signature, the combined hash tree is complete and ready
for extraction. State 2106 then automatically transitions to
sending state 2104.

[0276] The entry action of sending state 2104 sends a
“tree” signal downstream to extractor 1506, accompanied by
the now-complete combined signature tree of the current
workspace of signer 1504. Upon sending the tree down-
stream, the action clears the current workspace in prepara-
tion for receipt of a new partial from upstream. Finally, state
2104 automatically transitions back to waiting state 2102.

[0277] FIG. 22. State Machine for a Signature Extractor

[0278] FIG. 22 shows a state machine for extractor 1506.
Extractor 1506 can receive a signal “tree” from upstream
signer 1504; this signal is a combined signature tree, com-
pleted and signed and ready for extraction.

[0279] An initial state 2200 transitions to an idle state
2201, which is the quiescent state while waiting for signer
1504 to complete. Upon receipt of a “tree” signal, a tree
transition 2210 fires to enter an initializing state 2203. An
extracting state 2202 consists of initializing state 2203, an
extracting-next state 2204, and a sending state 2205. Upon
entry, initializing state 2203 prepares the tree for individual
signature extraction. State 2203 then automatically transi-
tions to extracting-next state 2204.

[0280] State 2204 extracts the next signature from the tree
and marks it as extracted. If the tree is empty and no further
signatures can be extracted, an at-end transition 2211 fires to
return to the idle state. If the tree is not empty, then there is
an extracted signature ready to return to its original
requestor; at this point a signature transition 2212 fires to
enter sending state 2205. Sending state 2205 sends the
extracted signature to an output queue, which transports the
signature back as a return value. State 2205 then automati-
cally transitions back to extracting-next state 2204. States
2204 and 2205 form a loop that extract all the signatures
from a combined signature tree.

[0281] Description and Operation—Additional Embodi-
ments, FIGS. 23A-26B

[0282] Variants in Hash Functions

[0283] The particular hash functions used in a preferred
embodiment have a number of variants that also support the
same object of prevention against tree extensions. While the
variants are fairly straightforward to understand as differ-
ences from existing embodiments, it would tedious and
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certainly not concise to fully specify the variants in full.
Therefore only certain essential differences from a preferred
embodiment are noted; other differences will remain
imputed. Figures for these variant embodiments contain
extracts from exemplary diagrams and modification of sig-
nificant equations of specification.

[0284] 1t will be appreciated that these variants are not all
mutually exclusive. It is possible to employ combinations of
these variations into further variants of a preferred embodi-
ment.

[0285] FIGS. 23A-B. Salted Hash Functions

[0286] FIGS. 23A-B illustrate key differences in a variant
embodiment that uses salted hash functions to prevent tree
extensions. The principle of a salted hash function is that
each tree uses its own unique hash function for node value
computation. A family of hash functions is parameterized by
a bit string called the “salt”. The salt is chosen in secret and
only revealed outside a signature-making device after a tree
is constructed. Because no opponent can know a salt value
in advance, it is impossible to compute beforehand a leaf
value that would cause a tree extension.

[0287] FIG. 23A shows a difference in the top few nodes
of a combined signature tree for a salted hash variant. The
difference is an extra node off the root signature node that
holds a salt value. In a signature-making device as in FIG.
15, there must be a source for the value of a salt value just
as there is one for the padding. This would require an extra
input into root node signer 1504 (modification not shown).

[0288] FIG. 23B shows variant definitions of two impor-
tant equations in the specification of the main embodiment.
Equation 23.7.3 is a variant of Equation 7.3, providing a
variant definition of a node hash function. In this case the
node hash function is parameterized by a salt value. The salt
is incorporated into the hash function definition by prepend-
ing it to the output of a formatting function. Note that
Equation 23.7.3 does not define a position-dependent hash
function. Prevention against tree extensions can be accom-
plished by techniques other than position-dependence.

[0289] Equation 23.13.5 is a variant of Equation 13.5,
showing a variant definition of the signature tag in an
extracted individual combined signature. The variant format
substitutes the salt value for the size of the tree. A declared
salt value allows a branch to root to be recomputed by the
verifier. In this variant, verification may omit determination
of branch shape validity, so the tree size is absent from the
signature start tag.

[0290]
Nodes

[0291] FIG. 24 illustrates key differences in a variant
embodiment where bottom nodes, those whose children are
leaves, are formatted differently than top nodes, which are
all other parent nodes. The security of this technique
requires that the length of the input message sequence is
even, so that every leaf has a parent which is a bottom node.
The principle of security here is that every branch from leaf
to root has a single bottom node at the base and otherwise
consists of top nodes. Since a signature making device
always formats one node in any such chain with a bottom
format, any tree extension would have more than one such

FIG. 24. Distinctive Formatting of Bottom and Top
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bottom-formatted node. Such an extended sequence would
not verify correctly, since it would be reconstructed with
only a single bottom node.

[0292] Equation 24.8.1 is a modification of Equation 8.1,
showing a variant specification for a node formatting func-
tion. A bottom node is one where the indices of the node only
differ by one. Both alternatives in the definition call a
function LayerFormat( ), differing only in the “top”/“bot-
tom” designation they pass.

[0293] Equation 24.1 defines a function LayerFormat( ),
which takes a name for the tag as a parameter. Otherwise the
formatting function of Equation 24.1 is similar to those of
Equations 8.2-3.

[0294] FIG. 25. Inclusion of Node Positions

[0295] FIG. 25 illustrates key difference in a variant
embodiment where the node positions are directly incorpo-
rated into the result of a formatting function. Equation 25.8.1
is a variant of Equation 8.1. The node format adds a position
parameter to the tag structure that directly outputs the node
position.

[0296] An attempt at tree extension in this system would
fall afoul of the interval-splitting property of binary trees.
The nodes at the bottom of the tree can be split no farther
than their two children. Since the verification procedure
reconstructs a bottom branch node as a parent of two
children, no chain longer than a single child (i.e. the original
message) can verify correctly. Thus tree extensions are
thwarted.

[0297] FIGS. 26A,B. Separate Layer of Leaf Nodes

[0298] FIGS. 26A,B illustrate key differences in a variant
embodiment where the messages do not effectively form the
leaf layer of the hash tree, but rather correspond one-to-one
with a separate leaf layer. FIG. 26A shows an illustrative
section of a left end of such a variant tree. Properly speaking,
the messages are not part of the tree, and the correspondence
between leaves and messages is shown with dashed lines.

[0299] FIG. 26B shows a variant definition of a node
value function for a hash tree. Equation 26.7.6 is a variant
of Equation 7.6. Instead of the values of the leaves being
equal to the message values, as in Equation 7.6, they are the
result of applying a distinct leaf hash function. Equation
26.1 contains a definition for such a leaf hash function that
uses a standard construction. Equation 26.2 defines a for-
matting function for leaves.

[0300] As elsewhere, security for this variant relies on the
branch reconstruction process, which computes the bottom
leaf in the tree using a leaf hash function instead of a parent
hash function. No tree extension is possible with this dif-
ference.

[0301] The variant of FIGS. 26A,B has one notable dis-
advantage. The construction of the hash tree requires twice
as many hash operations as one where leaves are not
individually hashed. This means a significant performance
penalty, or else the requirement of additional circuitry to
pick up the added hash computation load.
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[0302] Description and Operation—Additional Embodi-
ment, FIG. 27-29

[0303] Alternate Digital Signature Primitives and Variant
Verification Techniques

[0304] While the ElGamal public key signature algorithm
provides a suitable public key algorithm, any number of
other public key signature algorithms could be substituted.
A number of these are described in Chapters 19 and 20 of
Bruce Schneier’s book Applied Cryptography, 2°¢ Edition.
One notable such alternative is the DSS algorithm standard-
ized by NIST. Indeed, since the combined signature is itself
a public key signature algorithm, it could be used recursively
as the digital signature for a top node.

[0305] Certain public key signature schemes have a spe-
cial feature called “message recovery”. (See Schneier, page
497.) Verification for a scheme with message recovery
contains a recovery function that extracts the original mes-
sage from the signature. The verification predicate is the
same for all schemes with message recovery—compare a
given message against a message recovered from a signature
with a public key. Verification with message recovery acts
like an inverse to the corresponding signature operation. In
particular, it allows alternate methods of verification for
combined signature trees and extracted signatures.

[0306] The principle behind these alternate methods is that
a prospective value for the root node of a hash tree can be
computed in two ways, which can then be compared. The
first way is the regular way, computing a hash tree root either
from a message sequence or from a message and a sibling
sequence. The second way is apply the recovery function of
the scheme to the signature value of an individual combined
signature. Then, instead of adding padding bits to the first
value in preparation for applying a verification predicate,
one can strip off the padding bits of the second value. At this
point two prospective values can be compared, each in H. If
they are equal, the signature verifies.

[0307] FIGS. 27-29 illustrate some of the major differ-
ences between this variant and a preferred embodiment.
Showing a complete set of differences would not add clarity.
Not all differences are shown; others must be inferred from
the overall design principles of this specification.

[0308] It is worth noting that although the definition of
combined signature tree validity in Equation 10.5 includes
padding in the term N(P), this definition does not need to
change for a variant using message recovery. Using message
recovery does not mean that the padding is not used to make
the signature, but rather a padding value is not required to
verify it.

[0309] FIG. 27. Exemplary Illustration of a Variant Indi-
vidual Combined Signature

[0310] FIG. 27 is a variant of FIG. 3, showing a variant
signature start tag 2771T for an individual combined signa-
ture. The rest of the signature is as in FIG. 3. Note that the
only difference is the absence of an analogue to padding
attribute 372. Value attribute 2771 and size attribute 2773
are both present in essentially unchanged form. (The refer-
ence numerals are different because they are parts of differ-
ent tag formats.) Since padding is not necessary for the
verification step, it is omitted from the signature format.

[0311] FIG.28. Exemplary Illustration of a Variant Pair of
Verification Trees

[0312] FIG. 28 is a variant of FIG. 4, showing a first
verification tree 2800 and a second verification tree 2801
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whose roots match when a signature is valid. First tree has
all the same structure as tree 400 except with no padding
node. Second tree 2801 starts with a signature node 2871 at
the bottom. A padding node 2861 is calculated by applying
a message recovery operation to signature node 2871. A
second hash tree root 2851 is the result of stripping padding
bits from node 2861.

[0313]

[0314] FIG. 29 shows variant equations from FIG. 14
concerning verification. Again, only key difference are noted
in the illustration; other differences must be inferred. The
extracted signature does not have a padding value, clearly.

[0315] Equation 29.1 is a variant of Equation 14.4 (but
uses its definition); the verification tree omits the padding
node of a preferred embodiment. Equation 29.2 is a variant
of Equations 14.6-7. The verification tree of Equation 29.2
is the restriction of that of Equation 14.6 to the domain that
omits the padding node. In other words, the verification tree
drops the padding node. This matches the illustration in
FIG. 28.

FIG. 29. Variant Verification Specifications

[0316] Equation 29.3 is a type specification of a message
recovery operation of a public key signature scheme. The
parameters are a public key and a signature value; the result
is a message value.

[0317] Equation 29.14.9 is a variant of the definition of
signature validity of Equation 14.9. The difference is in the
fourth predicate. Instead of verifying a signature value
against a computed padding node, a second prospective
value of a hash tree root node is computed and then
compared against the first. The second prospective value is
result of the message recovery operation on the signature,
followed by stripping off the padding bits.

[0318] Description and Operation—Alternate Embodi-
ments

[0319] The reader will readily see that there are a number
of alternate embodiments of the present invention not
already described. Several such alternate embodiments are
described below. These alternate embodiments represent
only a few of many potential embodiments of the present
invention. Furthermore, it would be impossible to charac-
terize all such possible embodiments. The alternative
embodiments below should be taken as exemplary of the
variety of potential embodiments, not as limitations to them.

[0320] The signature-making and signature-verifying
devices of the present invention can clearly be implemented
as software machines, as hardware devices, as firmware
within an embedded system, or as any combination of the
above. While the signature-making process and the signa-
ture-verifying process have been described with common
data structures, there is no reason that any single device
could not implement a signature-making process, a signa-
ture-extraction process, or a signature-verifying process
separately from each other, or in any combination.

[0321] Embodiments can be implemented as synchronous
devices or asynchronous devices, or a combination of the
two. One such combination of the two techniques would be
to use a wrapper around an asynchronous device that pre-
sented a synchronous interface to a calling program. The
independently-running stages in a pipelined signature-mak-
ing device can be implemented either as autonomous pro-
cesses or as threads, as a software environment supports.
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[0322] A notable alternate embodiment of the present
invention is as a coprocessor or add-on card for integration
into a general-purpose server computer. Such a coprocessor
could be implemented preferentially as an asynchronous,
pipelined device to take advantage of the improved latency
that such an architecture provides.

[0323] A further embodiment of the present invention is as
a network-connected signature-making server. Such a device
would function equivalently as a coprocessor, but would be
attached through the network rather than through the com-
puter’s expansion bus. Such an embodiment as a network
server would have expanded implementations of a message
sequence source and a signature output. These expanded
implementations would handle all the details of the network
interface.

[0324] Conclusions, Ramifications, and Scope

[0325] The combined signature of present invention pro-
vides a extraordinarily high-performance mechanism for
making public key signatures. Such a signature-making
device can enable high-performance applications far in
advance of the previous rate of progress of the art.

[0326] The present invention in its described embodi-
ments contain a number of further advantages, including the
following:

[0327] a) The algorithm for splitting signatures off
from a tree is very efficient since it is simply an
arrangement of data elements already computed.

[0328] b) A pipelined architecture for making com-
bined signatures allows one to reduce latency by
optimizing only the private key operation.

[0329] While the description of the several embodiments
above contain many specificities, they should not be con-
strued as limitations of the present invention, but rather as
exemplifications of the embodiments. Many variations of
the described embodiments are possible. Several such varia-
tions are described below.

[0330] Variations in Input

[0331] In the described embodiments, messages were
taken as short, fixed-length bit strings. This choice was in
order to more clearly expose an embodiment of the present
invention as a signature-making server. In a network server
embodiment, it is more efficient from a communication
bandwidth and latency perspective to require the client to
hash an original document down to a short, fixed-length
message, which is then the subject of a signing request.
Nevertheless, there is no need to require this property in
embodiments of the present invention. A variant embodi-
ment of the present invention accepts an entire document
and hashes it inside a signature-making server.

[0332] Ordering of the messages in the tree need not be
chronological. While the illustration of the pipelined opera-
tion shows messages being added to the tree in the order they
were received, there is no essential requirement for this. For
example, if certain signature requestors need higher priority
than others, then there is utility in rearranging the input
ordering.

[0333] An additional procedure to prevent against tree
extensions is to attempt to parse an input message as parent
node. If the node appears to be a signature format, the
signature-maker refuses to sign. A disadvantage of this
variation is that a signature device no longer will sign
arbitrary bit strings.
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[0334] Variations in Tree Structure

[0335] If protection against tree extension is not needed
for a particular application, any tree structure is usable, even
a randomly constructed one. Balanced trees yield shorter
signatures on average, but certain applications may value
other tree properties more than the length of a resulting
extracted signature. One well-known such modification is to
use ternary trees at each stage. A mixture of node arities is
also possible. Even unary nodes, parents with a single child,
could be used.

[0336] The mechanisms against tree extension in a pre-
ferred embodiment use a known-in-advance class of trees,
the LBB-trees. Nevertheless, it will be appreciated that the
anti-extension mechanisms work with many classes of trees.

[0337] The labeling convention of ordered pairs is conve-
nient for describing positions of nodes in ordered trees, in
particular in LBB-trees, but is not the only way of describing
positions. Since the principle of position-dependent hash
functions requires some dependence upon position, any
other unambiguous encoding mechanism would work.

[0338] Variations in Hash Tree Computation

[0339] Similarly to the choice of public key signature
algorithm, the selection of SHA-1 as the choice of crypto-
graphic hash function is open to substitution as well. Chapter
18 of Applied Cryptography, 2™ Edition by Bruce Schneier
describes a number of suitable functions. One such alterna-
tive is RIPE-MD.

[0340] The position-dependent hash functions described
for a preferred embodiment used an assumed class of tree.
If multiple classes of tree are desirable for reasons external
to a signature device, the top signature node could also
contain an identifier for a particular class of ordered trees.

[0341] The position-dependent hash functions of a pre-
ferred embodiment take a position parameter in order to
accomplish their position-dependence. Other means of
attaining position dependence are possible. For example,
root nodes, interior parent nodes, and leaf nodes are all
distinguishable as separate positions with needing to know
their exact position within a tree.

[0342] Variations in Top Signature Computation

[0343] The particular convention for padding the root
node for private key signature admits of much variation.
Different means of generating padding may have slightly
different security analysis properties, but all are part of the
scope of the present invention. Padding of all zeros, all ones,
of random bits, of the results of a hash function applied to
other signature data—all these methods are adequate for
padding.

[0344] Padding may be eliminated from the extracted
signature format when the procedure for determining the
padding is deterministic and, if parameterized, based only on
parameters shared by all signature verifiers. The hash tree
root value and the tree size are the two of these available in
a preferred embodiment. Constant padding, such as all zeros
or a predefined constant value, also suffice.

[0345] In an embodiment where the bit lengths of the
public key signature and the hash value of the root are of
identical lengths, padding may be eliminated entirely.
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[0346] Variations in Signature-Making

[0347] The component stages of a signature-making pipe-
line could also be replicated within a five-layer architecture,
rather than a five sub-device architecture. For instance, it
would be possible to have two or more public key signature
devices in the signing layer of such a device. Such an
architecture would be useful if it were needed to sign certain
messages with more than one signature at time. Using a
multiplicity of simultaneous signature operations allow mul-
tiple signatures without increasing the latency.

[0348] 1t is possible to change the division of labor
between tree pre-computation in one stage of a pipeline and
tree completion in a subsequent stage. Such alternate divi-
sions could support a pipeline as whole layers. Messages
could be variously assigned to a multiplicity of workspaces,
for example.

[0349] Since private key operations are very predictable in
their timing, a variation would anticipate the end of the
private key operation and send the “ready” message in
advance, in order to minimize the amount of time in the
“idle™ state.

[0350] In applications where joint signing is useful,
another variation would allow multiple signatures by differ-
ent private keys at the top in the signature node.

[0351] Variations in Signature Extraction

[0352] If a single requester has multiple signature requests
that have been combined into a single combined signature
tree, a variation of the signature extraction process would
present in a single signature the union of a number of
branches to root and the union of all their siblings. This
compaction would alleviate bandwidth and storage require-
ments.

[0353] Another variation in signature format allows the
various tags to be separated from each other and transmitted
separately. By including more information in the pieces of
signature format about sibling position and hash tree root
value, the various tag components of a signature could be
separated at extraction time and reassembled at verification
time. In particular, the present invention allows for a public
key signature on a hash tree root to be separated from hash
tree branches and the hash tree itself. The packaging of the
node representations is a matter of convenience of format-
ting.

[0354] Variations in Signature Verification

[0355] A signature verification device was described as
taking a single input for verification. A performance
enhancement is possible for a verification device that
accepts multiple input signatures from the same tree. At
minimum, the public key operation to compute a prospective
hash tree root value would only need to be done once. In
addition, certain computations of branch nodes, particularly
those near the top, could be performed only once instead of
multiple times.

[0356] Miscellaneous Variations

[0357] XML conventions for data representation have
been used to describe signature formats, but any other means
of formatting, such as ASN. 1, could be readily substituted.
Even an ad hoc data formatting procedure could be used.
The choice of data representation is enormously broad. The
only noteworthy requirement in choice of data format is that
the same representation be used for both for signature-
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making and signature-verifying; otherwise hash function
results won’t match up and signatures would not be verifi-
able.

[0358] The strings and characters described used ASCII.
Any other character encoding, such as Unicode, could also
be used.

[0359] Scope

[0360] Accordingly, the scope of the present invention
should be determined not by the embodiments illustrated,
but by the appended claims and their legal equivalents.

I claim:
1. A method for making a public key digital signature on
a plurality of messages in an electronic system, comprising:

a) arranging said plurality of messages into an ordered
sequence of messages,

b) constructing a hash tree from said sequence of mes-
sages, particularly computing a value of a root node of
said hash tree,

¢) preparing a private key for a digital signature operation,
and

d) performing a cryptographic signature operation with
said private key upon the value of said root node,

whereby a maker of said public key digital signature can
simultaneously sign said plurality of messages.
2. The method of claim 1, wherein

a) said hash tree is constructed with a position-dependent
hash function.
3. The method of claim 1, wherein

a) said hash tree is constructed with a salted hash function
that incorporates a salt value,

whereby an outside party need not know said salt value in
advance and thus would not be able to generate a tree
extension.

4. The method of claim 1, wherein

a) the value of the leaves of said hash tree are taken as the
results of a hash function applied to the values of said
sequence of messages,

whereby a verifier may be able to determine that said
public key digital signature was not generated as a tree
extension.

5. The method of claim 1, further including

a) performing said cryptographic signature operation with
padding added to the value of said root node,

whereby a verifier can verify a signature when using a
cryptographic signature scheme without message
recovery.

6. A method for making a public key digital signature on

an individual message from out of a plurality of messages in
an electronic system, comprising:

a) arranging said plurality of messages into an ordered
sequence of messages,

b) constructing a hash tree from said sequence of mes-
sages, particularly computing a value of a root node of
said hash tree,

¢) preparing a private key for a digital signature operation,

d) performing a cryptographic signature operation with
said private key upon the value of said root node, and

¢) extracting said public key digital signature from a
combination of said hash tree and from the results of
said cryptographic signature operation,
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whereby a verifier may be able to determine the verity of
said public key digital signature against a combination
comprising said individual message and a public key
corresponding to said private key.

7. The method of claim 6, further including

a) incorporating a hash tree size into said public key
digital signature, said hash tree size being the number
of said plurality of messages,

whereby a verifier may be able to determine that said
public key digital signature was not generated as a tree
extension.

8. The method of claim 6, further including

a) incorporating a salt value into said public key digital
signature, and wherein

b) said hash tree is constructed with a salted hash function
that incorporates said salt value,

whereby a verifier may be able to determine that said
public key digital signature was not generated as a tree
extension.

9. The method of claim 6, further including

a) performing said cryptographic signature operation with
padding added to the value of said root node, and

b) incorporating the value of said padding into said public
key digital signature,

whereby a verifier can verify a signature when using a
cryptographic signature scheme without message
recovery.

10. A method for verifying a public key digital signature

against an individual message and a public key in an
electronic system, comprising:

a) parsing said public key digital signature and retrieving
its signature data,

b) ascertaining that said signature data comprises a stated
signature value and a stated sibling value-and-position
sequence,

¢) computing a hash tree branch comprising a leaf node
and a root node, said hash tree branch being computed
with the value of said individual message and with said
stated sibling value-and-position sequence,

d) performing a verification operation on said stated
signature value with the value of said root node and
with said public key,

whereby a verifier can determine that said public key
digital signature was generated from said individual
message by a holder of a private key corresponding to
said public key.

11. The method of claim 10, wherein

a) said stated signature value comprises a stated crypto-
graphic signature and a stated padding value, and
further including

b) performing said verification operation with said stated
padding value added to the value of said root node,

whereby a verifier can verify a signature when using a
cryptographic signature scheme without message
recovery.

12. The method of claim 10, wherein

a) said stated signature value comprises a stated crypto-
graphic signature, and
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b) said verifying step uses a cryptographic signature
scheme with message recovery.
13. The method of claim 10, wherein

a) said hash tree branch is computed with a position-
dependent hash function.
14. The method of claim 10, further including

a) ascertaining that said signature data comprises a hash
tree size,

b) determining a tree representative of a tree family, said
tree representative having said hash tree size, and

¢) determining whether or not the shape of said hash tree
branch is a valid branch of said tree representative,

whereby a verifier can determine that said public key
digital signature was not generated as a tree extension.
15. The method of claim 10, further including

a) ascertaining that said signature data comprises a salt
value, and wherein

b) the hash function used to compute said hash tree branch
is a salted hash function that incorporates said salt
value.

whereby a verifier can have an assurance that said public
key digital signature was not generated as a tree exten-
sion.

16. The method of claim 10, wherein

a) the value of the leaf of said hash tree branch is taken
as the result of a hash function applied to the value of
said individual message,

whereby a verifier can have an assurance that said public
key digital signature was not generated as a tree exten-
sion.
17. A signature data structure embodied in a computer-
readable medium, comprising:

a) a value-and-position sequence, said value-and-position
sequence comprising a sibling sequence for a branch
from a leaf to the root of a hash tree, and

b) a public key signature,

whereby a signature maker has the ability to store and to
transmit said signature data structure comprising a
public key digital signature.
18. The signature data structure of claim 17, further
including

a) a padding value,

whereby a verifier can verify a signature when using a
cryptographic signature scheme without message
recovery.

19. The signature data structure of claim 17, further

including

a) a tree size value,

whereby a verifier can determine that said public key

digital signature was not generated as a tree extension.

20. The signature data structure of claim 17, further
including

a) a salt value,

whereby a verifier can verify a signature when said
signature was generated with a salted hash function.
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